JOURNAL OF COMMUTATIVE ALGEBRA
Volume 2, Number 3, Fall 2010

SHORT KOSZUL MODULES
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To Ralf Froberg, on his 65th birthday

ABSTRACT. This article is concerned with graded modules
M with linear resolutions over a standard graded algebra R.
It is proved that if such an M has Hilbert series Hps(s) of the
form ps®+qs®t1, then the algebra R is Koszul; if, in addition,
M has constant Betti numbers, then Hg(s) = 1+es+(e—1)s2.
When Hg(s) = 1+es+rs? withr < e—1, and R is Gorenstein
ore =1+ 1 < 3, it is proved that generic R-modules with
g < (e — 1)p are linear.

Introduction. We study homological properties of graded modules
over a standard graded commutative algebra R over a field k; recall
that this means that Ry equals k£ and R is generated over k by finitely
many elements of degree one.

Unless R is a polynomial ring, any general statement about R-
modules necessarily concerns modules of infinite projective dimension.
Various attractive conjectures have been based on expectations that ho-
mological properties of modules of finite projective dimension extend—in
appropriate form—to all modules.

It is remarkable that several such conjectures have been refuted by
using modules M, whose infinite minimal free resolution display the
simplest numerical pattern: the graded Betti numbers ﬁg (M) are zero
for all j # i (that is to say, M is Koszul), and B{%(M) = p for some
p > 1 and all i > 0; see [11, 15, 16]. Furthermore, in those examples
both R and M have special properties: R is a Koszul algebra, meaning
that k is a Koszul module, the Hilbert series Hr(s) =3 ;.5 ranky R, s
has the form 1 + es + (e — 1)s%, and one has Hys(s) = p + (e — 1)ps.
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