ARTINIANNESS OF LOCAL COHOMOLOGY

M. HELLUS AND J. STÜCKRAD

ABSTRACT. Let R = k[[x, y, u, v]] over a field $k, I = \langle u, v \rangle$ and p = xu + yv. Hartshorne has proved that $H_I^2(R/pR)$ is not artinian. We show that the same is true for *every* element p of (x, y)R. In fact, we show an even stronger statement. We use Matlis duals of local cohomology modules.

1. Introduction. It is an interesting question to determine if a given local cohomology module $H_I^i(M)$ is artinian, where I is an ideal of a local ring (R, m) and M is a finite R-module; this is one of Huneke's problems on local cohomology (see [3, third problem]). In this note, we prove that a large class of local cohomology modules is not artinian:

Theorem 1.1. Let (R,m) be a local, complete ring, $n = \dim(R) \ge 4$. Let I be an ideal of R of height n-2 such that $H_I^{n-1}(R) = H_I^n(R) = 0$. Let $a, b \in R$ such that (a, b)R is a prime ideal of height two and such that a, b defines a system of parameters for R/I. Then, for every $p \in (a, b)R$, $H_I^{n-2}(R/pR)$ is not artinian.

We actually prove something stronger: the Matlis dual $D(H_I^{n-2}(R/pR))$ has infinitely many associated prime ideals and is therefore not noetherian.

Theorem 1.1 immediately specializes to the following result which was proved by Hartshorne ([**2**, Section 3]): $H_I^2(R)$ is not artinian, where R = k[[x, y, u, v]]/(xu+yv), k is a field and $I \subseteq R$ is the ideal generated by the classes of u and v in R; in fact, according to Theorem 1.1, we can replace xu + yv by any element of (x, y)R and the statement is still true.

²⁰⁰⁰ AMS Mathematics subject classification. Primary MSC2000: 13D45, 13E10.

Keywords and phrases. Local Cohomology, Artinianness Received by the editors on November 20, 2007, and in revised form on May 12,

^{2008.}

DOI:10.1216/JCA-2009-1-2-269 Copyright ©2009 Rocky Mountain Mathematics Consortium

²⁶⁹