UPPER BOUNDS FOR UNITARY PERFECT NUMBERS AND UNITARY HARMONIC NUMBERS

TAKESHI GOTO

ABSTRACT. We prove the following two theorems: (1) If N is a unitary perfect number with k distinct prime factors, then $N < 2^{2^k}$. (2) If N is a unitary harmonic number with k distinct prime factors, then $N < (2^{2^k})^k$.

1. Introduction. Let σ_i be the divisor function defined by

$$\sigma_j(N) = \sum_{d \mid N} d^j.$$

This function is multiplicative, that is, $\sigma_j(ab) = \sigma_j(a)\sigma_j(b)$ if (a,b) = 1. A positive integer N is said to be a perfect number if $\sigma_1(N) = 2N$. It is well known that an even perfect number has a form $2^{p-1}(2^p-1)$ with 2^p-1 prime. As of October, 2006, 44 even perfect numbers are known (for the newest information, see the web site of GIMPS: http://www.mersenne.org/prime.htm). It is still open whether or not odd perfect numbers (OPNs) exist; however, many conditions for their existence are known. For example, Brent, Cohen and te Riele [1] showed that OPNs must be greater than 10^{300} . Suppose that N is an OPN with k distinct prime factors. Dickson [5] showed that, for a fixed positive integer k, there exist only finitely many such N. Moreover, it was shown by Hagis [7] and Chein [2] independently that k must be greater than 7. Pomerance [13] showed that $N < (4k)^{(4k)2^{k^2}}$, and this bound was improved by Heath-Brown [9] to 4^{4^k} , by Cook [4] to D^{4^k} with $D = (195)^{1/7} \approx 2.12$, by Nielsen [10] to 2^{4^k} .

Subbarao and Warren [15] introduced the concept of unitary perfect numbers (UPNs). A positive integer d is said to be a unitary divisor of N if $d \mid N$ and (d, N/d) = 1. So we define the unitary divisor function

 $^{2000~{\}rm AMS}$ Mathematics subject classification. Primary 11A25, 11Y70. Received by the editors on May 19, 2005.