H-CONTACT UNIT TANGENT SPHERE BUNDLES G. CALVARUSO AND D. PERRONE ABSTRACT. We study how the geometry of a Riemannian manifold (M,g) is influenced by the property that its unit tangent sphere bundle (T_1M,η,\bar{g}) is H-contact, that is, the characteristic vector field ξ of T_1M is harmonic. 1. Introduction. The study of the geometric properties of a Riemannian manifold (M,g) via the investigation of its unit tangent sphere bundle T_1M , is a well known and interesting research field in Riemannian geometry. T_1M can be equipped with its "natural" metric g_S (the one induced by the Sasaki metric of the tangent bundle), as well as with the contact metric \bar{g} of its standard contact metric structure (η, \bar{g}) . In both cases, geometrical properties of T_1M influence those of the base manifold M itself, and conversely. For example, all the information about the geodesics of (M,g) is encoded in the geodesic flow on T_1M , which is precisely the characteristic vector field ξ of its standard contact metric structure (η, \bar{g}) . Riemannian manifolds whose unit tangent sphere bundle is either K-contact or (strongly) φ -symmetric or a (k, μ) -space, were completely classified, see [3, 8, 23]. We can refer to [12] for a survey about the contact metric geometry of T_1M . Recently, many authors have studied the harmonicity of unit vector fields in several geometric situations, see, for example, [14] for a survey. If (M,g) is a compact and orientable Riemannian manifold, a unit vector field V of M is called harmonic if it is a critical point for the energy functional restricted to the set of all unit vector fields of M, [24, 25]. An interesting geometrical situation, in which a distinguished vector field appears in a natural way, is given by a contact manifold (M, η) where we have the characteristic vector field ξ . On the other hand, ξ AMS Mathematics subject classification. Primary 53C15,53C25, 53C35. Keywords and phrases. Contact metric manifolds, unit tangent sphere bundle, H-contact spaces. H-contact spaces. Received by the editors on October 8, 2004, and in revised form on February 8, 2005.