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COMMON INVARIANT SUBSPACES
FOR FINITELY QUASINILPOTENT COLLECTIONS
OF POSITIVE OPERATORS ON A BANACH SPACE

WITH A SCHAUDER BASIS

MINGXUE LIU

ABSTRACT. We prove that if C �= {0} is a collection
of continuous positive operators on a Banach space with a
Schauder basis that is finitely quasinilpotent at a nonzero
positive vector, then C and its positive commutant C′

+ have a
common nontrivial invariant closed subspace.

In 1995, Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw [4]
showed that every continuous positive operator S on a Banach space
X with a Schauder basis which commutes with a nonzero continuous
positive operator T on X that is quasinilpotent at a nonzero positive
vector has a nontrivial invariant closed subspace. In this paper, using
the Abramovich-Aliprantis-Burkinshaw technique based on the idea
from [2, 4], we extend the result to a collection C of operators on
X and obtain the result that C and its positive commutant C′

+ have
a common nontrivial invariant closed subspace. In particular, all
continuous positive operators on a Banach space X with a Schauder
basis which commute with a nonzero continuous positive operator T on
X that is quasinilpotent at a nonzero positive vector have a common
nontrivial invariant closed subspace.

In order to do this, we first recall some of the basic terminologies and
facts from [4, 5] and others. For the notions and facts not stated in
the text we refer to [1 15] and so on.

In this note, the word operator will be synonymous with linear
transformation. Let X be a Banach space and B(X) the Banach
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