CURVATURE AND PROPER HOLOMORPHIC MAPPINGS BETWEEN BOUNDED DOMAINS IN Cⁿ

E.B. LIN AND B. WONG

ABSTRACT. In this paper we discuss some connections between proper holomorphic mappings between domains in \mathbb{C}^n and the boundary behaviors of certain canonical invariant metrics (Cheng-Yau-Einstein Kähler metric, Bergman metric, intrinsic measures, etc.). Some compactness theorems have been proved (Theorem 4, Theorem 5). This generalizes an earlier result proved by the second author.

Introduction. A continuous mapping $f: X_1 \to X_2$ between two topological spaces is called proper if $f^{-1}(K) \subset X_1$ is compact whenever $K \subset X_2$ is compact. Proper holomorphic mappings between analytic spaces stand out for their beauty and simplicity. For instance, if $g: D_1 \to D_2$ is a proper holomorphic mapping between two bounded domains in C^n , a theorem of Remmert says that (D_1, g, D_2) is a finite branching cover. The branching locus in D_1 is described by $\{z \in D_1 | \det(dg(z)) = 0\}$. For the past ten years, there was a great amount of activity in characterizing the proper holomorphic mappings between pseudoconvex domains. It has been known for a long time that there are numerous proper holomorphic maps between unit disks in \mathbb{C}^1 . The simplest example is $g: \Delta = \{z \in \mathbb{C}^1 | |z| < 1\} \to \Delta, g(z) = z^n$, where n is any positive integer. Nevertheless, such a phenomenon is no longer true in higher dimensional cases. H. Alexander was able to verify the following interesting fact.

THEOREM 1. [1]. Let $B_n = \{(z_1, z_2, \ldots, z_n) | \sum_{i=1}^n |z_i|^2 < 1\}$ be the unit ball in $\mathbb{C}^n, n \geq 2$. Suppose $f: B_n \to B_n$ is a proper holomorphic mapping; then f must be a biholomorphism.

AMS(MOS) 1980 Subject Classification: Primary-53C55; Secondary-32A17. Key words and phrases: Proper holomorphic mappings, Einstein Kähler metrics, curvature, intrinsic measures.

Research partially supported by NSF Grant DMS-8506704.

Received by the editors on December 15, 1986.

Copyright ©1990 Rocky Mountain Mathematics Consortium