COUNTING FINITE SUBSETS OF AN IMMUNE SET

J.C.E. DEKKER

ABSTRACT. Let P be a recursive property of finite sets (of nonnegative integers) and ν an immune set of RET (i.e., recursive equivalence type) N. Consider the question, "How many finite subsets of ν have property P?" We shall answer this question if P has the additional property that $P(\alpha)$ if and only if $P(\beta)$, for every two finite sets α and β of the same cardinality.

1. **Preliminaries.** We use the word *number* for nonnegative integer, set for collection of numbers and class for collection of sets. The set of all numbers and the empty set are denoted by ε and o respectively. V stands for the class of all sets, Q for the class of all finite sets, \subset for inclusion and \subset_+ for proper inclusion. If f is a function, δf and ρf denote its domain and range respectively. Also, f_n means the same as f(n). The cardinality of a collection Γ is denoted by $\operatorname{card}(\Gamma)$ or $\operatorname{card}\Gamma$. The reader is assumed to be familiar with the basic properties of the collection Λ of all isols. For a survey of basic results see §1 of [2]; for a detailed exposition, see [4] or [5]. We write $\alpha \sim \beta$ for α is equivalent to β , i.e., card $\alpha = \operatorname{card} \beta$ and $\alpha \simeq \beta$ for α is recursively equivalent to β , i.e., Req(α) = Req(β). Some properties of combinatorial operators will be used; these are discussed in [1], [4] and [5]. The class Q of all finite sets can be effectively generated without repetitions in an infinite sequence. We shall use a particular sequence of this type, the so-called canonical enumeration $\langle \rho_n \rangle$; see [2, p. 277]. For each finite set σ there is exactly one number i such that $\sigma = \rho_i$; this number is called the canonical index of σ and is denoted by $\operatorname{can}(\sigma)$ or $\operatorname{can} \sigma$. If $S \subset Q$ we write can S for $\{ \operatorname{can} \sigma | \sigma \in S \}$. The function $r_n = \operatorname{card} \rho_n$ is recursive. For $n, k \in \varepsilon$ and $\alpha \in V$,

$$\begin{split} \nu_n &= \{x \in \varepsilon \,|\, x < n\}, \qquad 2^\alpha = \{x \in \varepsilon \,|\, \rho_x \subset \alpha\}, \\ [\alpha;k] &= \{x \in 2^\alpha |\, r_x = k\}, \qquad \int [n;k] = \operatorname{card} \left[\nu_n;k\right]. \end{split}$$

AMS (MOS) Subject Classification (1980). 03D50. Received by the editors on February 16, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium