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THE EXISTENCE OF AN EQUILIBRIUM
FOR PERMANENT SYSTEMS

V. HUTSON

ABSTRACT. The criterion of permanence for biological
systems requires that there exist a compact attractor for the
interior of the positive cone X lying in int X. It is shown here
that for several models permanence implies the existence of
an equilibrium point in int X corresponding to a stationary
coexistence state.

1. Introduction. The criterion of permanence for biological systems
is a condition ensuring the long-term survival of all species. Sufficient
conditions for permanence have been given for a wide variety of models,
see, for example, [3, 4, 5, 7, 8, 10, 11, 12, 13]. To illustrate the
question to be tackled here, consider a model based on a system of
autonomous ordinary differential equations

(1) z; = z; fi (), i=1,...,n,

on the positive cone R, where z = (x1,...,7,) and conditions
ensuring the global existence and uniqueness of solutions in forward
time are imposed. The system (1) is said to be permanent if there
exist m, M € (0,00) such that, given any « € int R}, there is a t, such
that

m < z;(t) < M, 1=1,...,n,t > t,.

From a biological point of view, it is reasonable to expect that if
permanence holds, there will be a stationary coexistence state in
int R}. If such a state does exist, a natural necessary condition for
permanence follows. An analogous question may be asked for the
system of difference equations

(2) z; =z fi(z), i=1,...,n,

where z} denotes the value of x; at the next generation. As has been
noted, for example, in [8] and [10], the question for both these systems
has an affirmative answer. The methods of proof have often been
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