POSITIVE SOLUTIONS OF A BOUNDARY VALUE PROBLEM

DARREL HANKERSON AND ALLAN PETERSON

For the moment, let K be a cone in \mathbf{R}^n . Then it is easy to prove that if

$$-u''(t) \in \mathcal{K}, \qquad t \in [a, b],$$

 $u(a) \in \mathcal{K}, \qquad u(b) \in \mathcal{K},$

then $u(t) \in \mathcal{K}$ for $t \in [a, b]$. This result was used in the work of Schmitt and Smith [3] on extremal solutions. Our main goal is to prove a generalization of this result.

First, we give some preliminary definitions and results. Let \mathcal{X} be a Banach space. A closed subset $\mathcal{K} \subseteq \mathcal{X}$ is said to be a *cone* provided

- (i) if $u, v \in \mathcal{K}$, then $\alpha u + \beta v \in \mathcal{K}$ for all $\alpha, \beta \geq 0$,
- (ii) if $u, -u \in \mathcal{K}$, then $u = \theta$ (the zero element of \mathcal{X}).

A cone \mathcal{K} is *solid* if its interior $\mathcal{K}^{\circ} \neq \emptyset$. As in [2], if $u, v \in \mathcal{X}$, we write $u \leq v$ in case $v - u \in \mathcal{K}$, and we write $u \ll v$ in case $v - u \in \mathcal{K}^{\circ}$.

LEMMA 1. Let K be a cone in a Banach space \mathcal{X} . If y(t) is the solution of the boundary value problem

$$\begin{split} y^{(n)}(t) &= \theta, & t \in [a, b], \\ y^{(i)}(a) &= \theta, & 0 \leq i \leq k - 1, \\ y^{(i)}(b) &= \theta, & 0 \leq i \leq n - k - 1, \ i \neq j, \\ (-1)^{j} y^{(j)}(b) &= \beta_{j} \in \mathcal{K}, \end{split}$$

where j is a fixed integer with $0 \le j \le n - k - 1$, then

$$y(t) \in \mathcal{K}, \qquad t \in [a, b].$$

Copyright ©1990 Rocky Mountain Mathematics Consortium