COMPOUND MATRICES AND ORDINARY DIFFERENTIAL EQUATIONS

JAMES S. MULDOWNEY

This paper is dedicated to the memory of Geoffrey Butler

ABSTRACT. A survey is given of a connection between compound matrices and ordinary differential equations. Some typical linear results are presented. For nonlinear autonomous systems, a criterion for orbital asymptotic stability of a closed trajectory given by Poincaré in two dimensions is extended to systems of any finite dimension. A criterion of Bendixson for the nonexistence of periodic solutions of a two dimensional system is also extended to higher dimensional systems.

1. Introduction. Let X be any $n \times m$ matrix of real or complex numbers, and let $x_{i_1...i_k}^{j_1...j_k}$ denote the minor of X determined by the rows (i_1, \ldots, i_k) and the columns (j_1, \ldots, j_k) , $1 \le i_1 < i_2 < \cdots < i_k \le n$, $1 \le j_1 < j_2 < \cdots < j_k \le m$. The k-th multiplicative compound $X^{(k)}$ of X is the $\binom{n}{k} \times \binom{m}{k}$ matrix whose entries, written in lexicographic order, are $x_{i_1...i_k}^{j_1...j_k}$. In particular, when X is $n \times k$ with columns x^1, \ldots, x^k , then $X^{(k)}$ is the exterior product $x^1 \wedge \cdots \wedge x^k$ represented as a column vector. The term "multiplicative" is used since the Binet-Cauchy Theorem [13, p. 17] states that

$$(1.1) (AB)^{(k)} = A^{(k)}B^{(k)}$$

for any matrices A and B of dimension consistent with the multiplication. An immediate consequence of (1.1) is that, for any nonsingular $n \times n$ matrix X, $(X^{(k)})^{-1} = (X^{-1})^{(k)}$, since $I^{(k)}$ is clearly the $\binom{n}{k} \times \binom{n}{k}$ identity, if I is the $n \times n$ identity.

When m=n, the k-th additive compound $X^{[k]}$ of X is the $\binom{n}{k}\times\binom{n}{k}$ matrix defined by

(1.2)
$$X^{[k]} = D(I + hX)^{(k)}|_{h=0},$$

Research supported by the Natural Sciences and Engineering Research Council of Canada under Grant NSERC A7197.