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ABSTRACT. A survey is given of a connection between
compound matrices and ordinary differential equations. Some
typical linear results are presented. For nonlinear autonomous
systems, a criterion for orbital asymptotic stability of a closed
trajectory given by Poincaré in two dimensions is extended
to systems of any finite dimension. A criterion of Bendixson
for the nonexistence of periodic solutions of a two dimensional
system is also extended to higher dimensional systems.

1. Introduction. Let X be any n X m matrix of real or complex
numbers, and let wfllf: denote the minor of X determined by the
rows (i1,...,0;) and the columns (ji,...,jk), 1 < i1 < iz < -+ <
ik <n, 1< 51 < jJo < -0 < jr < m. The k-th multiplicative
compound X* of X is the (%) x (') matrix whose entries, written

in lexicographic order, are wﬁf}’j In particular, when X is n X k
with columns z, ..., z*, then X(*) is the exterior product z' A--- Az

represented as a column vector. The term “multiplicative” is used since
the Binet-Cauchy Theorem [13, p. 17] states that

(1.1) (AB)F) = AW g(k)

for any matrices A and B of dimension consistent with the multiplica-
tion. An immediate consequence of (1.1) is that, for any nonsingular
n xn matrix X, (X®)~1 = (X1)*) since I® is clearly the (Z) X (Z)
identity, if I is the n X n identity.

When m = n, the k-th additive compound X*! of X is the () = (%)
matrix defined by

(1.2) X = D(I + hX)® |j,—,
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