A GENERALIZATION OF A RESULT OF HURWITZ AND MORDELL ON THE TORSION SUBGROUPS OF CERTAIN ELLIPTIC CURVES

CHRIS CALDWELL

1. Introduction. Let k be an algebraic number field. For any elements a, b, c, d of k with $abc(d^3 - 27abc) \neq 0$, define an irreducible nonsingular cubic curve (over the field of complex numbers) by

$$F: aX^3 + bY^3 + cZ^3 = dXYZ.$$

Whenever the set of k-rational points F(k) (points P in the projective plane with P = (x, y, z) for some integers x, y, z of k) is not empty, F is an elliptic curve over k and F(k) is an abelian group. We consider the problem of finding the torsion subgroup of F(k). We also give an infinite family of elliptic curves over the rational numbers \mathbf{Q} with rank at least two.

The rank of these curves has been very well studied, see [1, 2, 3, 6, 12, 13, 14, 16]. Yet previously the only general result about the torsion subgroup of F(k), denoted here by tor(F(k)), were the theorems of Hurwitz [8] and Mordell [10,11]. These authors did not use the modern language of elliptic curves, but their results may be written as follows

- **Theorem 1.1.** (Hurwitz-Mordell) Let a, b and c be squarefree nonzero rational integers, relatively prime in pairs. Let d be an integer such that $d^3 \neq 27abc$. Suppose that $F(\mathbf{Q})$ is not empty, and make F an elliptic curve over k by choosing any element of $F(\mathbf{Q})$ as the origin of F.
- (i) If at most one of a, b, c is ± 1 , then the only torsion point is the origin and the rank of $F(\mathbf{Q})$ is positive.
- (ii) If a = b = 1, $c \neq \pm 1$, then $F(\mathbf{Q})$ has one or three torsion points. $F(\mathbf{Q})$ has three torsion points if and only if $d = c \pm 2$ or $4c \pm 1$.
- (iii) If a = b = c = 1 and $d \neq -1, 5$, then $F(\mathbf{Q})$ has three torsion points.

Received by the editors on October 15, 1988.