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A BASIC CONSTRUCTION IN DUALS OF
SEPARABLE BANACH SPACES

ELIZABETH M. BATOR

ABSTRACT. A basic construction of the Cantor set A
in the dual of a separable Banach space X is presented.
If X* is nonseparable, a modification of this construction
yields bounded e-trees in X* (Stegall). A continuous linear
surjection from X to C(A) is obtained if ¢! embeds in X
(Pelczynski) by a further modification of this construction.
Through it the delicate nature of the difference between the
cases (i) X* is nonseparable and (ii) ¢! embeds in X is
highlighted.

A. Introduction. Let A® denote the usual Cantor set with dyadic
partitions (C°, : i = 1,...,2")%, and Haar measure \° (where
AO(CY,) =27" for all i and n). Let A9.(-) = 2"A%((-) N CY,).

Now let A denote the natural copy of A® in C'(A°)*, the points of
A corresponding to point-masses on C(A°). Let \,; denote A, as a
measure on A. We think of A, in C(A%)* as the barycenter of the
measure \,; on A. Note that the A\%.’s form a bounded e-tree, with
e=2,as A\, = (1/2) (\)j12i 1 +A0y1,2:) and [[XD g0 1 = A0 oill =
2.

Now suppose X is a separable Banach space and X* is nonseparable.
Then it is easy (see Corollary 2 below) to construct a topological copy of
A in (B*, weak*) which is norm discrete (and conversely the existence
of such a set obviously implies X* is nonseparable). C. Stegall [7]
showed how to construct such a A and corresponding dyadic partitions
(Chns), with Haar measure A, so that the barycenters 7, of the measures
Ani(5) = 27A((-) N Cp;i) on A form a bounded e-tree in X*.

On the other hand, the Pelczynski-Hagler theorem states that ¢!
embeds in a separable Banach space X if and only if there exists a
continuous linear surjection from X to C(A°) [3, 4]. In this paper
a basic construction is presented which obtains these two results and
highlights the delicate differences between them.
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