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ON THE REPRESENTATION OF MEASURABLE
SET VALUED MAPS THROUGH SELECTIONS

ARRIGO CELLINA AND RINALDO M. COLOMBO

1. Introduction. Under reasonable hypotheses, a measurable
multi-function F admits measurable selections. Actually [1], in this
case, one can describe the whole multi-function through a countable
family F of selections, in the sense that

F(z)=cl{f(z): f € F}.

In the present paper we consider an integrably bounded (or L?-
bounded) multi-function with values in R™ and we show that the
countable family F can be chosen to be (relatively) compact in L.

Equivalently, we show the existence of a family F of selections of F’
describing F' as above, such that a(F) = 0, where « is the Kuratowski
index. In [2], o(F) was determined for the family F of all the integrable
selections of F.

2. Notation and preliminary results. For a subset A of a set
X, (A)€ is the complement of A in X. For X a metric space and A
bounded, a(A) is the Kuratowski index [14],

a(A) = inf {8 A= U A;,diam (4;) < 8},
i=1

cl (A) is the closure of A. The finite dimensional space R™ is supplied
with the norm ||z|| = sup; |z;|. ||A| is sup{||a]| : « € A}. The closed
ball in R™ of center y and radius ¢ is denoted by B[y,e]. When F
is a set-valued map and A is a set, F~'(A) is {z : F(z) N A # &}.
We recall that F' from a measure space to the subsets of R™ is called
measurable if F~1(A) is measurable for every closed A; this implies
that F~!(B) is measurable for every open B. For the properties of
measurable multi-functions on measure spaces, we refer to [3].
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