ON THE REPRESENTATION OF MEASURABLE SET VALUED MAPS THROUGH SELECTIONS

ARRIGO CELLINA AND RINALDO M. COLOMBO

1. Introduction. Under reasonable hypotheses, a measurable multi-function F admits measurable selections. Actually [1], in this case, one can describe the whole multi-function through a countable family \mathcal{F} of selections, in the sense that

$$F(x) = \operatorname{cl} \{ f(x) : f \in \mathcal{F} \}.$$

In the present paper we consider an integrably bounded (or \mathbf{L}^p -bounded) multi-function with values in \mathbf{R}^m and we show that the countable family \mathcal{F} can be chosen to be (relatively) compact in \mathbf{L}^p .

Equivalently, we show the existence of a family \mathcal{F} of selections of F describing F as above, such that $\alpha(\mathcal{F}) = 0$, where α is the Kuratowski index. In [2], $\alpha(\mathcal{F})$ was determined for the family \mathcal{F} of all the integrable selections of F.

2. Notation and preliminary results. For a subset A of a set X, $(A)^{\mathbf{C}}$ is the complement of A in X. For X a metric space and A bounded, $\alpha(A)$ is the Kuratowski index [14],

$$lpha(A) = \inf igg\{ arepsilon : A = igcup_{i=1}^n A_i, \operatorname{diam}\left(A_i
ight) \leq arepsilon igg\},$$

cl (A) is the closure of A. The finite dimensional space \mathbf{R}^m is supplied with the norm $\|x\| = \sup_i |x_i|$. $\|A\|$ is $\sup\{\|a\| : a \in A\}$. The closed ball in \mathbf{R}^m of center y and radius ε is denoted by $B[y, \varepsilon]$. When F is a set-valued map and A is a set, $F^{-1}(A)$ is $\{x : F(x) \cap A \neq \varnothing\}$. We recall that F from a measure space to the subsets of \mathbf{R}^m is called measurable if $F^{-1}(A)$ is measurable for every closed A; this implies that $F^{-1}(B)$ is measurable for every open B. For the properties of measurable multi-functions on measure spaces, we refer to $[\mathbf{3}]$.

Received by the editors on February 22, 1989, and in revised form on October 30, 1989.

¹⁹⁸⁰ AMS Mathematics subject classification. Primary 54C65, 28B20.