ON ABSOLUTE WEIGHTED MEAN SUMMABILITY

C. ORHAN AND M.A. SARIGÖL

1. Definitions and notation. Let Σa_n be an infinite series with a sequence of its partial sums (s_n) , and let $A = (a_{nk})$ be an infinite matrix. Assume that

(1)
$$T_n = \sum_{v=0}^{\infty} a_{nv} s_v, \qquad n = 0, 1, \dots$$

exists (i.e., the series on the right-hand side converges for each n). If

(2)
$$\sum_{n=1}^{\infty} n^{k-1} |T_n - T_{n-1}|^k < \infty,$$

then Σa_n is said to be $|A|_k$ summable, where $k \geq 1$. When k = 1, we say that Σa_n is absolutely summable by the matrix A or simply summable |A|.

Now let A be a Riesz matrix, i.e., weighted mean matrix defined by

$$a_{nv} = p_v/P_n$$
 for $0 \le v \le n$, and $a_{nv} = 0$ for $v > n$

where (p_n) is a sequence of positive real numbers, and

$$P_n = p_0 + p_1 + \dots + p_n, \qquad P_{-1} = 0, \qquad P_n \to \infty \text{ as } n \to \infty.$$

If no confusion is likely to arise, we say that $\sum a_n$ is summable $|R, p_n|_k$, $k \geq 1$, if (2) holds.

Using analytical techniques, it is shown in [3] that the summability methods $|R, p_n|_k$ and $|R, q_n|_k$, $k \geq 1$, are equivalent under certain conditions

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on October 11, 1991, and in revised form on February 13, 1992.

^{13, 1992.} This research was supported by the Scientific and Technical Research Council of Turkey, TBAG-ÇG2.