TOEPLITZ OPERATORS ON THE DISK WITH LOCALLY SECTORIAL SYMBOLS

ALBRECHT BÖTTCHER

1. Introduction. Let **D** denote the open unit disk in **C**, and let $A^2(\mathbf{D})$ be the Bergman space of square-integrable holomorphic functions in **D**. For $a \in L^{\infty} := L^{\infty}(\mathbf{D})$, the Toeplitz operator T(a) on $A^2(\mathbf{D})$ is defined by $T(a)\varphi = P(a\varphi)$ ($\varphi \in A^2(\mathbf{D})$), where P is the orthogonal projection of $L^2(\mathbf{D})$ onto $A^2(\mathbf{D})$. The function a is usually referred to as the symbol of the operator T(a).

The Fredholm properties of Toeplitz operators on $A^2(\mathbf{D})$ were studied by Venugopalkrishna [15] and Coburn [7] for symbols in $C(\bar{\mathbf{D}})$ (the functions continuous on the closed disk $\bar{\mathbf{D}}$), by McDonald [10] (and also in [8]) for symbols in $C(\bar{\mathbf{D}}) + H^{\infty}(\mathbf{D})$, and by McDonald and Sundberg [12] for symbols in alg $\mathcal{H}L^{\infty}(\mathbf{T})$, the smallest closed subalgebra of L^{∞} containing the bounded harmonic functions. Note that all these symbol classes are subalgebras of the algebra BC of all bounded continuous functions on \mathbf{D} .

Symbols which are not in BC were considered by Luecking [9] and McDonald [11]. Luecking established an invertibility criterion for T(a) in case $a \geq 0$ a.e. on \mathbf{D} . McDonald proved a Fredholm criterion for T(a) in the case where a belongs to $HC(\mathbf{D})$, the set of all functions $a \in L^{\infty}$ with the following property: for each $\tau \in \mathbf{T} := \partial \mathbf{D}$ there exists a set $U_{\tau} := \{z \in \mathbf{D} : |z - \tau| < \varepsilon\}$ and a straight line containing τ and dividing U_{τ} into two subsets U_{τ}^- and U_{τ}^+ such that $a|U_{\tau}^-$ and $a|U_{\tau}^+$ are uniformly continuous.

We remark that a major part of the aforementioned papers actually deal with Toeplitz operators on the ball $\{z \in \mathbf{C}^n : |z| < 1\}$ or on more general (and even exotic) domains. In addition to the works already cited, we refer in this connection to [1] and [3].

The present note concentrates on Toeplitz operators whose symbols are locally sectorial in some sense. Assume, for example, λ, μ, ν are

Received by the editors on September 6, 1989, and in revised form on April 2, 1992.