ON GENERALIZED ABSOLUTE CESÀRO SUMMABILITY FACTORS

HÜSEYİN BOR

ABSTRACT. In this paper using δ -quasi-monotone sequences a theorem on $|C, \alpha|_k$, $0 < \alpha \le 1$, summability factors of infinite series, which generalizes a theorem of Mazhar [6] on $|C,1|_k$ summability factors, has been proved.

1. Introduction. A sequence (b_n) of positive numbers is said to be quasi-monotone if $n\Delta b_n \geq -\beta b_n$ for some β and is said to be δ quasi-monotone, if $b_n \to 0$, $b_n > 0$ ultimately and $\Delta b_n \geq -\delta_n$, where (δ_n) is a sequence of positive numbers (see [1]). Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by u_n^{α} and t_n^{α} the n-th Cesàro means of order α , $\alpha > -1$, of the sequences (s_n) and (na_n) , respectively, i.e.,

(1.1)
$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v$$

(1.2)
$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v,$$

where

(1.3)
$$A_n^{\alpha} = \binom{n+\alpha}{n} = \mathcal{O}(n^{\alpha}), \qquad \alpha > -1, \quad A_0^{\alpha} = 1$$
 and $A_{-n}^{\alpha} = 0$ for $n > 0$.

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \geq 1$, if (see [3])

(1.4)
$$\sum_{n=1}^{\infty} n^{k-1} |u_n^{\alpha} - u_{n-1}^{\alpha}|^k < \infty.$$

Received by the editors on August 27, 1991, and in revised form on April 9,

Tiggl AMS Subject Classification. 40D15, 40G05. This paper was supported by Tübitak, TBAG-C2.