

DOYLE CUTLER AND RADOSLAV DIMITRIĆ

Dedicated to Professor Djuro Kurepa on the occasion of his 86th birthday.

ABSTRACT. The key result states that, for a regular cardinal \varkappa , the \varkappa -Kurepa hypothesis (the existence of a tree of height \varkappa with levels of cardinality $< \varkappa$ and at least \varkappa +branches) is equivalent to the existence of a valuated vector space V of cardinality \varkappa with the following properties: (a) its \varkappa -topology is Hausdorff; (b) for every $i < \varkappa$, $|V/V(i)| < \varkappa$; and (c) the completion \bar{V} of V in the \varkappa -topology has cardinality greater than \varkappa . Another equivalence to the \varkappa -Kurepa hypothesis is obtained by replacing (b) by the following condition (b'): For every $i < \varkappa$ and every subspace $W \le V/V(i)$, with $|W| < \varkappa$, its closure \overline{W} , in the i-topology, also satisfies $|\overline{W}| < \varkappa$.

This is used to prove in a short and elegant way some results previously established by P. Keef; namely, Kurepa's hypothesis is equivalent to the existence of a C_{ω_1} -group G of length ω_1 and cardinality at least \aleph_2 with a p^{ω_1} -pure subgroup A of cardinality \aleph_1 whose closure in the ω_1 -topology of G has cardinality at least \aleph_2 . This is also equivalent to the existence of a C_{ω_1} -group of length ω_1 and balanced projective dimension 2.

Let V be a valuated vector space over a field F with valuation $v:V\to \operatorname{Ord}\cup\{\infty\}$, i.e., a function satisfying $v(a)=\infty$ if and only if $a=0,\,v(ta)=v(a)$ for all scalars $t\neq 0$, and $v(a+b)\geq \min\{v(a),v(b)\}$. Then by $V(\alpha)$ we mean the subspace $V(\alpha)=\{x\in V:v(x)\geq \alpha\}$. If λ is a limit ordinal, then by the λ -topology on V we mean the linear topology having as a base for the neighborhoods of 0 the set $\{V(\alpha):\alpha<\lambda\}$. All the topologies in this paper will be of this kind. It is easy to see that if $a,b\in V$ with $v(a)\neq v(b)$ then $v(a+b)=\min\{v(a),v(b)\}$.

Received by the editors on November 10, 1991, and in revised form on August 20, 1992.

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision). Primary 20K10, 04A20, Secondary 20K40, 20K45.

Key words and phrases. Valuated vector space, Kurepa's hypothesis, abelian p-group, C_{ω_1} -group, balanced projective dimension.