STRICTLY POSITIVE DEFINITE KERNELS ON THE CIRCLE

VALDIR A. MENEGATTO

ABSTRACT. A sufficient condition is given for the strict positive definiteness and for the strict conditional negative definiteness of a real, continuous radial kernel on the circle. In addition, some necessary conditions are also given, nearly characterizing these kernels.

1. Introduction. On the unit circle S^1 , let d_1 be the geodesic distance. The purpose of this paper is to address the problem of finding a continuous function $f:[0,\pi]\to \mathbf{R}$ for which $f\circ d_1$ is either a strictly positive definite or strictly conditionally negative definite kernel. Following [1], we say that a function $f:S^1\times S^1\to \mathbf{R}$ is a positive definite kernel if and only if

$$\sum_{i,j=1}^{n} c_i c_j f(x_i, x_j) \ge 0$$

for all $n \in \mathbb{N}$, $\{x_1, x_2, \dots, x_n\} \subset S^1$, and $\{c_1, c_2, \dots, c_n\} \subset \mathbb{R}$. We say that the function f is a conditionally negative definite kernel if f(x, y) = f(y, x) for all $x, y \in S^1$ and

$$\sum_{i,j=1}^{n} c_i c_j f(x_i, x_j) \le 0$$

for all $n \geq 2$, $\{x_1, x_2, \ldots, x_n\} \subset S^1$ and $\{c_1, c_2, \ldots, c_n\} \subset \mathbf{R}$ with $\sum_{j=1}^n c_j = 0$. If the above inequalities are strict whenever x_1, x_2, \ldots, x_n are different and at least one of the c_1, c_2, \ldots, c_n does not vanish, we say that the kernel f is strictly positive (respectively, strictly conditionally negative) definite.

Copyright ©1995 Rocky Mountain Mathematics Consortium

Received by the editors on April 7, 1993, and in revised form on September 20, 1993.

^{1993.}Partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnologico-CNPq (Brazil).