NONPROBABILISTIC COMPUTATION OF THE POISSON BOUNDARY FOR AN ÉTALÉE MEASURE ON A SEMI-SIMPLE LIE GROUP

DOUGLAS PAUL DOKKEN

0. Introduction. In [6], Furstenberg proved the existence of a boundary representation for μ -harmonic functions on T, a connected semi-simple Lie group with finite center and no compact factors. In the same paper he also computed the boundary in the case μ was absolutely continuous with respect to Haar measure on T. In proving both these results he used probability theory (the Martingale theorem). In [1] Azencott generalized these results to the case of an étalée measure again using probability theory.

In [2] it was shown how to construct the boundary using nonprobabilistic techniques. These results were developed further in [3] applied to μ and T as in Furstenberg's situation with the additional hypothesis that μ was supported on T. The boundary was shown to be a compact homogeneous space of T.

In this paper we prove Azencott's generalization of Furstenberg's result (see Theorem 2.7) for the case of μ , a spread out étalée measure on T a semi-simple, connected Lie group, with finite center and no compact factors. The techniques we use are those developed in [2] and [3] and are nonprobabilistic in nature.

1. Review of basic concepts. In this section we review the basic definitions and constructions involved in the Poisson boundary (B,T,ω) . For a more detailed discussion, see [2] and [3]. Let T be a locally compact Hausdorff topological group. The right uniformly continuous functions on T which are bounded form a Banach algebra, \mathbf{R} , with respect to pointwise multiplication and the supremum norm. Let P be the Gelfand space of \mathbf{R} . Then (P,T) is a flow and P has a semi-group structure such that if $p \in P$, then $l_p: P \to P: q \to p \cdot q$ is continuous, and if $t \in T$, then $r_t: P \to P: q \to q \cdot t$ is continuous.

Received by the editors on July 15, 1993.