WEIGHTED L^2 -MULTIPLIERS

CHING-HUA CHANG AND CHIN-CHENG LIN

ABSTRACT. In this paper we give a simple proof of the characterization of an L^2 multiplier with weight $|x|^{2k}$, $k \in \mathbb{N}$.

1. Introduction. Let $f \mapsto \hat{f}$ be the Fourier transform, $f \mapsto \check{f}$ the inverse Fourier transform, and m a bounded measurable function on \mathbf{R} . We say that m is a multiplier for $L^p(\mathbf{R})$, $1 \le p \le \infty$, if $f \in L^2 \cap L^p$ implies $(m\hat{f})^{\check{}}$ is in L^p and satisfies

$$||(m\hat{f})^{\check{}}||_p \leq C_p||f||_p$$
 with C_p independent of f .

For $\alpha \geq 0$, we express $L^2(x^{2\alpha})$ the collection of f with $||f||_{L^2(x^{2\alpha})}^2 = \int_{-\infty}^{\infty} |x^{\alpha}f(x)|^2 dx < \infty$, and $\mathcal{S}_{00}(\mathbf{R}) = \{f \text{ in the Schwartz class } \mathcal{S}(\mathbf{R}): \hat{f} \text{ has compact support not including the origin} \}$. For $f \in \mathcal{S}_{00}$, it is easy to check that $xf \in \mathcal{S}_{00}$ and $\hat{f}^{(k)}$ vanishes in a neighborhood of the origin for all $k \in \mathbf{N}$. Thus we have $\hat{f}^{(k)}(x) = \int_0^x \hat{f}^{(k+1)}(t) dt$ for all $k \in \mathbf{N}$. Furthermore, it is well known that \mathcal{S}_{00} is dense in $L^2(x^{2\alpha})$ (see [4]).

Hörmander [1] gave a sufficient condition for multipliers in 1960. Kurtz and Wheeden [2] proved a weighted version of the Hörmander multiplier theorem. Both gave sufficient conditions for multipliers, but not necessary conditions. Muckenhoupt, Wheeden, and Young [4] provided sufficient and necessary conditions for L^2 multipliers with power weight $|x|^{2\alpha}$, $\alpha \in \mathbf{R}$. In this paper we use the principle of mathematical induction to give a simple proof of the characterization of an L^2 multiplier with weight $|x|^{2k}$, $k \in \mathbf{N}$. Finally, we mention that C will be used to denote a constant which may vary from line to line.

We recall that Hardy's inequality with weights is stated as following.

Theorem 1 [3]. If $1 \le p \le \infty$, there is a finite constant C for which

$$(1.1) \left(\int_0^\infty \left| U(x) \int_0^x f(t) \, dt \right|^p dx \right)^{1/p} \le C \left(\int_0^\infty |V(x)f(x)|^p \, dx \right)^{1/p}$$

Received by the editors on June 22, 1993.

Copyright ©1995 Rocky Mountain Mathematics Consortium