ROBINSON'S THEOREM ON ASYMMETRIC DIOPHANTINE APPROXIMATION

JINGCHENG TONG

ABSTRACT. Let x be an irrational number. In this note we give two functions A(K) and B(K) defined on positive integers, for which the asymmetric approximation inequality $-1/(A(K)q^2) < x-p/q < 1/(B(K)q^2)$ has infinitely many rational solutions p/q. This result improves Robinson's classical asymmetric inequality found in 1947.

1. Introduction. In 1891, Hurwitz [3] proved the fundamental theorem on Diophantine approximation, which asserts that for any irrational number x, there are infinitely many rational numbers p/q such that $|x-p/q| < 1/(\sqrt{5}q^2)$. This inequality involves absolute value and is called symmetric approximation.

In 1945, Segre [10] initiated the study of asymmetric approximation. He proved that for any irrational numbers x and a given positive real number τ independent of x, there are infinitely many rational numbers p/q such that $-1/(\sqrt{1+4\tau}q^2) < x - p/q < \tau/(\sqrt{1+4\tau}q^2)$. Segre's result has been extensively investigated. See Mahler [7], Le Veque [6], Kopetzky and Schnitzer [4, 5], Prasad and Prasad [8], Szüsz [11] and Tong [12–16].

Right after Segre's discovery, Robinson [9] pointed out another direction of asymmetric approximation in 1947. He proved the following theorem:

Theorem 1. Let x be an irrational number. Then for any given positive real number ε , there are infinitely many rational numbers p/q such that

(1)
$$-1/((\sqrt{5} - \varepsilon)q^2) < x - p/q < 1/((1 + \sqrt{5})q^2).$$

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on January 8, 1994, and in revised form on August 18, 1994.

AMS (1990) Mathematical Subject Classification. Primary 11J04, 11A55.