CAUCHY TRANSFORMS OF MEASURES AND WEIGHTED SHIFT OPERATORS ON THE DISC ALGEBRA

R. HIBSCHWEILER AND E. NORDGREN

ABSTRACT. We consider families \mathcal{F}_{α} , $\alpha>0$, of analytic functions $F_{\mu}(z)$ on the unit disc that are obtained by integrating $(1-e^{i\theta}z)^{-\alpha}$ with respect to complex measures μ on the unit circle. These families are Banach spaces which are isometrically isomorphic to the dual space of the disc algebra. The collection \mathfrak{M}_{α} of all multipliers of \mathcal{F}_{α} is shown to be the set of adjoints of the commutant of a certain weighted shift operator on the disc algebra.

It is known that if $0 < \alpha < \beta$, then $\mathfrak{M}_{\alpha} \subset \mathfrak{M}_{\beta}$. We show that this inclusion is proper in a number of cases. Also, for various α we find conditions on the sequence of Taylor coefficients of an analytic function that imply that the function is a multiplier of \mathcal{F}_{α} .

1. Introduction. In this paper we consider families \mathcal{F}_{α} of Cauchy transforms of complex Borel measures on the unit circle **T** in the complex plane. For $\alpha > 0$ let \mathcal{F}_{α} consist of all functions f on the unit disc of the form

$$F_{\mu}(z) = \int_{\mathbf{T}} \frac{1}{(1 - e^{i\theta}z)^{\alpha}} d\mu(e^{i\theta}),$$

where μ is a complex Borel measure on **T**. If $[\mu]$ is the equivalence class of all measures representing F_{μ} , then the norm $||F_{\mu}||_{\alpha} = ||[\mu]||$ makes \mathcal{F}_{α} into a Banach space.

The family \mathcal{F}_1 is of classical interest [8, 9, 20]. For example, it includes the Hardy spaces H^p for $p \geq 1$. The families \mathcal{F}_{α} , $\alpha > 0$, were defined by T.H. MacGregor [16] in connection with geometric function theory. In particular, [16] includes the result that for $0 < \alpha < \beta$, $\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$. We give a proof of the stronger result that $\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta a}$, the subset of \mathcal{F}_{β} consisting of transforms of absolutely continuous measures,

Received by the editors on June 18, 1993. 1991 Mathematics Subject Classification. 30E20, 46E15.