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Let K be a number field of degree § over the rationals Q and S a
finite set of places of K containing the archimedean places M. Let
Us denote the group of S-units of K and U the group of units. Let
s = #S. Then, for a,8 € K*, the (two variable) S-unit equation is

(1) ax + Py =1, z,y € Us.

In its simplest form, & = 8 = 1 and S = M,; we call the resulting
equation

(2) r+y=1, z,y € U,

the “unit equation.” For a general reference to S-unit equations, see
[4]. Evertse has shown that the number of solutions to (1) is at most
3 x 7%t25 [3]. The dependence of the bound on s is interesting. An
equivalence relation on S-unit equations is given in [5], and it is shown
there that for fixed K and S, there are only finitely-many equivalence
classes of S-unit equations with more than two solutions. Yet, it is
shown in [6] that with K = Q, « = 8 = 1, (1) can have more than
exp(C's'/?/log(s)) solutions, for some constant C' > 0. (A conjecture
for the correct dependence on s of the number of solutions to (1) with
K =Q and a = =1 is also given in [6].)

On the other hand, it is unknown how the number of solutions to (2)
should depend on §. Nagell has shown that, for any § > 5, there are
infinitely many number fields K of degree § over Q with at least 6(25—3)
solutions to (2) [8]. (This bound is twice what Nagell stated, but Nagell
did not distinguish between the solutions (e1,¢2) and (e2,€1) to (2).)
There is considerable room between Evertse’s and Nagell’s bounds; the
purpose of this paper is to produce sequences of number fields where
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