ON MAHLER’S CLASSIFICATION
IN LAURENT SERIES FIELDS

EUGÈNE DUBOIS

ABSTRACT. In 1932, K. Mahler introduced his famous classification for complex numbers in disjoint sets \(A, S, T, U \) [9, 10]. In 1978, P. Bundschuh introduced a similar classification for the field of formal Laurent series over a finite field \(K \) and gave some explicit series in the class \(U \). Here we consider the case of an arbitrary field \(K \) and prove the existence of \(U \)-numbers whose continued fractions verify additional properties.

0. Introduction. T. Schneider’s book [16, Chapter 3] is a complete introduction to the subject, whereas A. Baker’s book [2, Chapter 8] offers a general outlook. For a polynomial \(P = c_n x^n + \cdots + c_0 \) in \(\mathbb{Z}[X] \) with \(c_n \neq 0 \), we define the degree \(d(P) \) and the height \(h(P) \) by

\[
d(P) = n, \quad h(P) = \text{Max} \{ |c_j|, 0 \leq j \leq n \}.
\]

For natural numbers \(n \geq 1, H \geq 1 \), we consider

\[(1) \quad P_{n,H} = \{ P \in \mathbb{Z}[X] : d(P) \leq n, H(P) \leq H \}\]

and for any complex number \(\xi \), we define \(w(n, H, \xi), w_n(\xi), w(\xi) \) by

\[
\text{Min} \{ |P(\xi)| : P \in P_{n,H} \} = H^{-n} w(n, H, \xi)
\]

and

\[
w_n = w_n(\xi) = \limsup_{H \to \infty} w(n, H, \xi);
\]

\[
w = w(\xi) = \limsup_{n \to \infty} w_n(\xi)
\]

\[(2) \quad v = v(\xi) = \text{Inf} \{ n : w_n(\xi) = \infty \}
\]

with \(v = \infty \) if \(w_n < \infty \) for all \(n \).

Received by the editors on October 28, 1994, and in revised form on May 24, 1995.

Copyright ©1996 Rocky Mountain Mathematics Consortium