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ON MAHLER’S CLASSIFICATION
IN LAURENT SERIES FIELDS

EUGENE DUBOIS

ABSTRACT. In 1932, K. Mahler introduced his famous
classification for complex numbers in disjoint sets A, S,T,U
[9, 10]. In 1978, P. Bundschuh introduced a similar classifi-
cation for the field of formal Laurent series over a finite field K
and gave some explicit series in the class U. Here we consider
the case of an arbitrary field K and prove the existence of
U-numbers whose continued fractions verify additional prop-
erties.

0. Introduction. T. Schneider’s book [16, Chapter 3] is a complete
introduction to the subject, whereas A. Baker’s book [2, Chapter 8]
offers a general outlook. For a polynomial P = ¢,z + -+ ¢o in Z[X]
with ¢, # 0, we define the degree d(P) and the height h(P) by

d(P) =mn, h(P) = Max {|c;|,0 < j <n}.
For natural numbers n > 1, H > 1, we consider
(1) P,u={P€Z[X]:d(P)<n,H(P)<H}
and for any complex number £, we define w(n, H,§), w,(§), w(€) by
Min{|P(§)|: P€ Py u} = H—w(nH)

and

Wy, = wy(§) = limsup w(n, H, §);

H—o00

@) w=w(f) = lin sup wn (§)

v=2(§) =Inf{n: w,(§) = oo}

with v = oo if w,, < oo for all n.
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