ASYMPTOTIC BEHAVIOR OF ORTHOGONAL RATIONAL FUNCTIONS CORRESPONDING TO MEASURE WITH DISCRETE PART OFF THE UNIT CIRCLE

K. PAN

ABSTRACT. For a positive measure μ on the unit circle in the complex plane, m points off the unit circle z_1,\ldots,z_m and m positive number $A_j,\ j=1,2,\ldots,m$, we investigate the asymptotic behavior of orthogonal rational functions $\psi_n(z),$ $n=0,1,2,\ldots,$ with prescribed poles lying outside the unit circle corresponding to $d\mu/2\pi+\sum_{j=1}^m A_j\delta_{z_j}$, where δ_z denotes the unit measure supported at point z. We find the relative asymptotics of $\psi_n(z)$ with respect to the orthogonal rational functions corresponding to $d\mu/2\pi$ off the unit circle.

1. Introduction. Let $d\mu$ be a finite positive Borel measure with an infinite set as its support on $[0,2\pi)$. We define $L^2_{d\mu}$ to be the space of all functions f(z) on the unit circle $T:=\{z\in \mathbf{C}:|z|=1\}$ satisfying $\int_0^{2\pi}|f(e^{i\theta})|^2\,d\mu(\theta)<\infty$. Then $L^2_{d\mu}$ is a Hilbert space with inner product

$$\langle f, g \rangle := \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} \, d\mu(\theta).$$

We define \mathcal{P}_n to be all polynomials with degree at most n. For any polynomial q_n with degree n, we define $q_n^*(z) = z^n \overline{q_n(1/\bar{z})}$. Consider an arbitrary infinite sequence $\mathbf{S} = \{\alpha_n\}$ with $n \in \mathbf{N}$ and $|\alpha_n| < 1$, and let

$$b_k(z) := \frac{\alpha_k - z}{1 - \bar{\alpha}_k z} \frac{|\alpha_k|}{\alpha_k}, \qquad k = 1, \dots,$$

where for $\alpha_k = 0$ we put $|\alpha_k|/\alpha_k = -1$. Next we define finite Blaschke products recursively as

$$B_0(z) = 1$$
 and $B_k(z) = B_{k-1}(z)b_k(z)$, $k = 1, \dots$

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on August 25, 1994, and in revised form on January 25, 1995.