LOCAL ARTINIAN RINGS AND THE FRÖBERG RELATION

ROBERT W. FITZGERALD

0. Introduction. R will denote a local Artinian ring, \mathbf{m} the unique maximal ideal and k the residue field. The Poincaré series is $P_R(t) = \sum_{i\geq 0} \dim (\operatorname{Tor}_i^R(k,k)) t^i$ and the Hilbert series is $H_R(t) = \sum_{i\geq 0} \dim (\mathbf{m}^i/\mathbf{m}^{i+1}) t^i$. $P_R(t)$ is a formal power series while $H_R(t)$ is a polynomial (but not the Hilbert polynomial) since R is Artinian.

We consider the Fröberg relation, first studied in [7]: $P_R(t) = H_R(-t)^{-1}$. R is a Fröberg ring if this relation holds. We are interested in determining when R is Fröberg, particularly in the critical case of $\mathbf{m}^3 = 0$ (cf., [2]). The Fröberg relation is a strong property; $P_R(t)$ need not even be rational [1]. Our main result is: If $\mathbf{m}^3 = 0$ and $\mathbf{m} \cdot \operatorname{ann} x = \mathbf{m}^2$ for all $x \in \mathbf{m} \setminus \mathbf{m}^2$, then R is a Fröberg ring.

This work was motivated by the classification problem for Artinian Witt rings (which are necessarily local) with the unique maximal ideal being the ideal I of even dimensional forms. We briefly review the problem. Let W_F be the class of Witt rings of nonsingular quadratic forms over fields L such that $|L^+/L^{-2}|$ is finite and $-1 \in \sum L^2$. The class W_E of Artinian Witt rings of elementary type is defined inductively. Start with the fundamental Witt rings: $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$ and those of local type (Witt rings of certain P-adic fields, cf. [13, Chapter 3]). W_E consists of the Witt rings built from the fundamental Witt rings by a finite sequence of fiber products (over $\mathbb{Z}/2\mathbb{Z}$) and group ring extensions (by finite groups of exponent 2.) Lastly, W_A is the class of Artinian abstract Witt rings defined by Marshall [13]. Then $W_E \subset W_F \subset W_A$. It is conjectured that $W_E = W_A$, but neither inclusion is known to be an equality.

We show that if $R \in W_E$, that is, R is of elementary type, then R is a Fröberg ring. This motivated our search for sufficient conditions on R to be Fröberg that could easily be checked for abstract Witt rings.

Received by the editors on August 31, 1994, and in revised form on January 30, 1995.