ALMOST RECONSTRUCTION OF THE 3-DIMENSIONAL BALL FROM $K_{pqrs} imes I$

JOHN DONALD AND DAVID GILLMAN

ABSTRACT. Let K_{pqrs} denote the 2-complex obtained by attaching two disks to the wedge of two circles by the words a^pb^q and a^rb^s , with $ps-qr=\pm 1$. The complex K_{pqrs} is contractible. If the Zeeman conjecture is true, then $K_{pqrs}\times I$ is collapsible. This paper proves that $K_{pqrs}\times I$ collapses to a 2-sphere S^2 plus its interior. The proof exhibits K_{pqrs} as the spine of a 3-ball under a retraction map whose restriction to the boundary S^2 lifts to an embedding into $K_{pqrs}\times I$.

1. Introduction. Let K_{pqrs} denote the 2-complex obtained by attaching two disks to the wedge of two circles by the words a^pb^q and a^rb^s , with $ps-qr=\pm 1$. The set K_{pqrs} is contractible. Let I denote a unit interval. In [3], Zeeman posed the question: Is $K_{pqrs}\times I$ collapsible? Zeeman proved that the answer is affirmative for K_{1112} , the "topological dunce hat." In [2], Lickorish provided an affirmative answer for K_{2334} , but observed that his methodology did not seem to generalize to all K_{pqrs} . In this paper, we display a structure on all K_{pqrs} which seems to correspond to the initial phase of Lickorish's collapse of $K_{2334} \times I$, and which is valid for all K_{pqrs} : The product $K_{pqrs} \times I$ collapses to a 2-sphere plus its interior.

Definition. Let S^2 denote a piecewise linear 2-sphere in a contractible 3-complex K^3 . A point p of $K^3 - S^2$ lies in the *interior* of S^2 if S^2 is nontrivial in $H_2(K^3 - p; Z_2)$, the second homology group of $K^3 - p$ with Z_2 -coefficients.

This definition is commonly used in the special case of a 2-sphere plus its interior in Euclidean 3-space (the three-dimensional PL Schoenflies theorem). In this paper we concern ourselves with constructing a 2-sphere plus its interior in the set $K_{pqrs} \times I$.

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on May 13, 1992, and in revised form on April 29, 1994. MR subject classifications. 57M, 57Q.