SUBGROUP SEPARABILITY OF CERTAIN HNN EXTENSIONS OF FINITELY GENERATED ABELIAN GROUPS

P.C. WONG

ABSTRACT. In this note we give a characterization for certain HNN extensions of finitely generated abelian groups to be subgroup separable.

- 1. A group G is called subgroup separable if, for each finitely generated subgroup M and for each $x \in G \backslash M$, there exists a normal subgroup N of finite index in G such that $x \notin MN$. It is well known that free groups and polycyclic groups (and hence finitely generated abelian groups) are subgroup separable [6, 7].
- Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ be an HNN extension where K is a finitely generated abelian group, A and B are the associated subgroups and φ is the associated isomorphism $\varphi : A \to B$. Suppose A and B have finite index in K. In this note we give a characterization for the HNN extension G to be subgroup separable. We shall prove the following:
- **Theorem 1.** Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ be an HNN extension where K is a finitely generated abelian group and A and B have finite index in K. Then the following are equivalent:
 - (i) G is subgroup separable;
- (ii) Either K = A = B or there exists a subgroup H of finite index in K and H is normal in G;
- (iii) There exists a finitely generated abelian group X such that K is a subgroup of finite index in X and an automorphism $\bar{\varphi} \in \operatorname{Aut} X$ with $\bar{\varphi}|_{A} = \varphi$.

Received by the editors on October 12, 1993, and in revised form on October 31,

^{1994.} 1980 Mathematics Subject Classification. Primary 20E25, 20F05, Secondary

 $^{20\}mathrm{F}25.$ Key~words~and~phrases. HNN extension, finitely generated abelian groups, subgroup separable, residually finite.