UNIQUENESS OF SMALL SOLUTIONS TO THE DIRICHLET PROBLEM FOR THE HIGHER DIMENSIONAL H-SYSTEM

HANS-CHRISTOPH GRUNAU

ABSTRACT. Let $\Omega \subset \mathbf{R}^n$, $n \geq 2$, $u, v : \Omega \to \mathbf{R}^{n+1}$ be two solutions of the constant mean curvature equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(|\nabla u|^{n-2} \frac{\partial}{\partial x_{i}} u \right) = n^{n/2} H(u_{x_{1}} \times \dots \times u_{x_{n}}).$$

Assume u=v on $\partial\Omega$ and $|H|\max(\sup_{\Omega}|u|,\sup_{\Omega}|v|)<1/n$. Then u and v coincide in Ω .

The Dirichlet problem for the equation of surfaces of prescribed mean curvature in \mathbb{R}^3

$$\Delta u = 2H(u_{x_1} \times u_{x_2})$$

has been frequently studied, and great progress has been achieved in the last decades. We only mention the important contributions of E. Heinz $[\mathbf{3}, \ \mathbf{4}]$, S. Hildebrandt $[\mathbf{5}]$ and H.C. Wente $[\mathbf{9}]$. A far more extensive bibliography can, e.g., be found in $[\mathbf{1}]$. Under reasonable assumptions on H and the prescribed boundary values, existence, uniqueness and regularity of "small" solutions have been proven.

F. Duzaar and M. Fuchs [1, 2] have studied the higher dimensional analogue

(1)
$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(|\nabla u|^{n-2} \frac{\partial}{\partial x_{i}} u \right) = n^{n/2} H(u_{x_{1}} \times \dots \times u_{x_{n}})$$

$$\text{in } \Omega \subset \mathbf{R}^{n},$$

$$u = u_{0} \quad \text{on } \partial \Omega.$$

Here $\Omega \subset \mathbf{R}^n$, $n \geq 2$, is a smoothly bounded domain, $u : \overline{\Omega} \to \mathbf{R}^{n+1}$ is the unknown vector function, H is a constant and u_0 a sufficiently

Received by the editors on August 1, 1994.