COMPLEMENTED COPIES OF l_1 IN $L^{\infty}(\mu, X)$

SANTIAGO DÍAZ

An active field of research in recent years has been the study of the inclusion, as a subspace or complemented subspace, of classical Banach sequence spaces such as c_0 , l_1 or l_{∞} in Banach spaces $L^p(\mu, X)$ of Bochner p-integrable (essentially bounded for $p=\infty$) functions over a finite measure space (Ω, Σ, μ) with values in a Banach space X. The following problem, originally posed by Labuda, is mentioned in [4, p. 389]: When does $L^{\infty}(\mu, X)$ contain a complemented copy of l_1 ? Natural conjectures such as "if (and only if) X has a (complemented) copy of l_1 ," were disproved by an example due to Montgomery-Smith [4, p. 389]: there is a Banach space X with separable dual such that $L^{\infty}(\mu, X)$ contains a complemented copy of l_1 . The aim of this paper is to answer this question for the case when X is a Banach lattice.

Theorem. Let X be a Banach lattice. The following are equivalent:

- (1) $L^{\infty}(\mu, X)$ contains a complemented subspace isomorphic to $L^{1}[0, 1]$.
- (2) $L^{\infty}(\mu, X)$ contains a complemented subspace isomorphic to l_1 .
- (3) $l_{\infty}(X)$ contains all l_1^n uniformly complemented.
- (4) X contains all l_1^n uniformly complemented.

Before proving this theorem, let us recall a few notions from the local theory of Banach spaces. A normed space X is said to be an S_p -space, $1 \leq p \leq \infty$, if it contains all l_p^n uniformly complemented, i.e., if there is some $\lambda \geq 1$ such that, for every $n \in \mathbf{N}$ there are operators $J_n \in L(l_p^n, X)$ and $P_n \in L(X, l_p^n)$, satisfying

$$P_n J_n = \mathrm{id}_{l_n^n}; \qquad ||P_n|| \, ||J_n|| \le \lambda.$$

We may assume throughout that $||P_n|| \le \lambda$ and $||J_n|| \le 1$, for all $n \in \mathbb{N}$.

The terminology an notations are standard except, perhaps, the following one: if (A_n) is a sequence of pairwise disjoint measurable

Received by the editors on August 31, 1994.