HIGHER DIMENSIONAL AHLFORS REGULAR SETS AND CHORDARC CURVES IN Rⁿ

MANOUCHEHR GHAMSARI AND DAVID A. HERRON

1. Introduction. Recall that a Jordan curve C is *chordarc*, abbreviated CA, if there is a constant c such that for each pair of points $x, y \in C$ the arclength of one of the components A of $C \setminus \{x, y\}$ satisfies

$$l(A) \le c|x - y|.$$

Since $l(A) \geq \operatorname{diam}(A)$ for any arc A it is immediate that CA plane curves are quasicircles. (See Section 2 for many definitions and terminology.) Obviously CA curves are locally rectifiable. In fact, every CA curve is $Ahlfors\ regular$, abbreviated AR, which means that there is a constant b such that for all z and all r>0 we have

$$l(C \cap B(z;r)) \leq br.$$

It is folklore that Ahlfors regular quasicircles are chordarc. Another important property of CA curves, established by Tukia [9], and independently by Jerison and Kenig [8, 1.13], is that each one is bilipschitz equivalent to the circle S^1 via a global homeomorphism of the plane. We summarize these comments as follows.

Theorem. For a Jordan curve $C \subset \mathbf{R}^2$, the following are equivalent.

- (a) C is chordarc.
- (b) C is an Ahlfors regular quasicircle.
- (c) $C = f(S^1)$ where $f : \mathbf{R}^2 \to \mathbf{R}^2$ is bilipschitz.

Moreover, all constants depend only on each other and diam (C).

This paper is a product of our efforts to generalize the above theorem. We consider Jordan curves in \mathbb{R}^n with Hausdorff dimension $\alpha \in [1, n)$.

Copyright ©1998 Rocky Mountain Mathematics Consortium

Received by the editors on June 19, 1995. The second author was partially supported by the University of Cincinnati's Taft Memorial Fund.