A KAPLANSKY THEOREM FOR JB*-ALGEBRAS

S. HEJAZIAN AND A. NIKNAM

ABSTRACT. We provide a new proof of a previously known result, namely every (not necessarily complete) algebra norm on a JB*-algebra generates a topology stronger than the one of the JB*-norm. As a consequence, if θ is a homomorphism of a JB*-algebra A into a Banach Jordan algebra B,

- (i) the range of θ is closed in B if θ is continuous,
- (ii) θ is injective if and only if it is bounded below.

Introduction. A Jordan algebra is a nonassociative algebra A over the complex or real field in which the product satisfies ab = ba and $(ab)a^2 = a(ba^2), a, b \in A$. The Jordan triple product $\{abc\}$ is defined to be (ab)c + a(bc) - (ac)b, and for a in A, L_a denotes the operator of left multiplication by a.

A Banach Jordan algebra is a Jordan algebra A equipped with a complete norm $\|\cdot\|$, such that $\|ab\| \leq \|a\|\|b\|$, $a,b \in A$. A complex Banach Jordan algebra A with an involution *, such that $\|\{aa^*a\}\| = \|a\|^3$ for all a in A is called a JB*-algebra. It has been shown in [18] that in a JB*-algebra A the involution * is an isometry, and every closed associative *-subalgebra of A is a C^* -algebra. this shows that the class of JB*-algebras coincides with the class of Jordan C^* -algebras introduced by Kaplansky in 1976, see [17]. For a JB*algebra A, we denote by $C^*(a)$ the C^* -subalgebra of A generated by a self-adjoint element $a \in A$. If A is a C^* -algebra we define the Jordan product of two elements a, b in A by a.b = (ab + ba)/2. In terms of this product, A becomes a JB*-algebra. A closed linear *-subspace of a C^* -algebra B which is closed under the Jordan product is called a JC*-algebra. The theory of JB*-algebra is of capital importance in the theory of JB*-triples, and the classification of bounded symmetric domains in the complex Banach spaces, see [6] and [9].

Received by the editors on August 1, 1995, and in revised form on May 3, 1996. 1991 AMS Mathematics Subject Classification. 46L70.

Key words and phrases. Continuity of homomorphism, JB*-algebra, separating

Research supported by a grant from the University of Manitoba, Canada.