CONSTRAINED CONVERGENCE

ROBERT E. HARTWIG AND PETER ŠEMRL

ABSTRACT. The convergence of PA^NQ is investigated. The results are then used to obtain information about the convergence of constrained Picard iteration $Y_N = PX_N$, where $X_{N+1} = AX_N + B$. In particular, it is shown that, for given P, A and B there exists an initial condition $X_0 = C$ for which Y_N converges, exactly when $R[\vartheta B] \subseteq R[\vartheta(I-A)]$, where $\vartheta = [P^T, A^TP^T, \ldots, (A^{m-1})^TP^T]^T$ and m is the degree of the minimal polynomial of A.

1. Introduction. One of the most basic iterations in matrix theory is the Picard iteration (PI) [1]:

(1.1)
$$X_{N+1} = AX_N + B$$
 with $X_0 = C$,

where A, B and C are constant complex matrices and A is $n \times n$. In practice, however, it may be that only the constrained matrix $Y_N = PX_N$ is "observable." Since the PI iterations admits the exact solution

(1.2)
$$X_N = \left[\sum_{i=0}^{N-1} A^i\right] B + A^N C,$$

we see that

(1.3)
$$Y_N = P \left[\sum_{i=0}^{N-1} A^i \right] B + P A^N C,$$

and, hence, that the convergence of both $S_N = P[\sum_{i=0}^{N-1} A^i]B$ as well as that of PA^NC (as $N \to \infty$) ensures that of Y_N . The converse may not be true, however, as seen by taking $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ and P = I. On the other hand, if we set U = B - (I - A)C, then

(1.4)
$$P\left[\sum_{i=0}^{N-1} A^{i}\right] U = P\left[\sum_{i=0}^{N-1} A^{i}\right] B - P(I - A^{N}) C$$
$$= PX_{N} - PC,$$

Received by the editors on May 20, 1997. AMS (MOS) Mathematics Subject Classification. 15A24, 15A09, 56F10.

Copyright ©1999 Rocky Mountain Mathematics Consortium