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ON HANKEL CONVOLUTION EQUATIONS
IN DISTRIBUTION SPACES

JORGE J. BETANCOR AND LOURDES RODRÍGUEZ-MESA

ABSTRACT. In this paper we study Hankel convolution
equations in distribution spaces. Solvability conditions for
Hankel convolution equations are obtained. Also we investi-
gated hypoelliptic Hankel convolution equations.

1. Introduction. The Hankel integral transformation is usually
defined by

hµ(φ)(x) =
∫ ∞

0

(xt)1/2Jµ(xt)φ(t) dt, x ∈ I = (0,∞),

where Jµ denotes the Bessel function of the first kind and order µ.
Throughout this paper µ always will be greater than −1/2, and we will
denote by I the real interval (0,∞).

Zemanian [25, 26 and 27] investigated the hµ transformation on
generalized function spaces. He introduced in [25] the space Hµ

constituted by all those complex valued and smooth functions φ defined
on I such that, for every m, k ∈ N,

γµ
m,k(φ) = sup

x∈(0,∞)
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(
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x
D

)k

[x−µ−1/2φ(x)]
∣∣∣∣ <∞.

The space Hµ is Fréchet when it is endowed with the topology
generated by the family {γµ

m,k}m,k∈N of seminorms. It was established,
[25, Lemma 8] that hµ is an automorphism of Hµ. The Hankel
transformation is defined on H′

µ, the dual space of Hµ, as the adjoint of
the hµ-transformation of Hµ, and it is denoted by h′µ. More recently,
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