ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 4, Winter 2004

FROBENIUS CLASSES IN ALTERNATING GROUPS

DAVID P. ROBERTS

ABSTRACT. We present a method, based on an old idea of Serre, for completely computing Frobenius classes in alternating groups. We contrast this method with other approaches in examples involving the alternating groups A_3 and A_9 . The method can be useful for proper subgroups of alternating groups as well, and we present examples involving the 168-element group $PSL_2(7) = GL_3(2)$ and the Mathieu group M_{24} .

1. Introduction. Let $f \in \mathbf{Z}[x]$ be a monic degree *n* irreducible polynomial. Let *X* be its set of complex roots. Let *G* be the Galois group of *f*. By definition, *G* is a subgroup of the symmetric group S_X . A standard fact is that *G* is contained in the alternating group A_X if and only if the field discriminant *d* of $\mathbf{Q}[x]/f(x)$ is a square. Equivalently, $G \subseteq A_X$ if and only if the polynomial discriminant $D = dc^2$ of *f* is a square.

In general, for G a finite group we denote by G^{\natural} its set of conjugacy classes. For example, the class-set S_n^{\natural} is naturally identified, via lengths of disjoint cycles, with the set P_n of partitions of n. In this paper, we are concerned with the class-set A_n^{\natural} . For $n \geq 3$, the natural map $A_n^{\natural} \to S_n^{\natural}$ is never quite injective, as two classes can be sent to one.

In the situation of the first paragraph, for each prime p not dividing d there is a Frobenius class $\operatorname{Fr}_p \in G^{\natural}$. Let Fr_p^S be the image of Fr_p under the natural map $G^{\natural} \to S_n^{\natural}$. Then, as is very well known, Fr_p^S is just the partition giving the degrees of the irreducible factors of f in the ring $\mathbb{Z}_p[x]$, where \mathbb{Z}_p is the ring of p-adic integers. The computation is easier for p not dividing D, as then it suffices to factor over the finite field \mathbb{F}_p , rather than over \mathbb{Z}_p .

Now, assuming d is a square, and imposing our conventions in Sections 2 and 3 to remove a single global sign ambiguity, one has a natural map from G^{\natural} to A_n^{\natural} . Let Fr_n^A be the image of Fr_p in A_n^{\natural} .

Received by the editors on September 21, 2001, and in revised form on May 28, 2002.

Copyright ©2004 Rocky Mountain Mathematics Consortium