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GERMS OF HOLOMORPHIC FUNCTIONS
ON TOPOLOGICAL VECTOR SPACES

AND INVARIANT RINGS

E. BALLICO

ABSTRACT. Let V be a locally convex and Hausdorff
topological vector space and G a finite group of holomorphic
automorphisms of OV,0. Here we prove that the ring OG

V,0 of

all invariant germs is a C.M.∞-local ring.

1. Introduction. Let (X, OX) be a Hausdorff reduced complex
space locally embedded in a locally convex topological vector space,
i.e., a Cartan space with the terminology of [2, p. 65] and G a finite
group of holomorphic automorphisms of X. Let X/G be the set of all
G-orbits equipped with the quotient topology, and let f : X → X/G
be the quotient map. Since G is finite, X/G is Hausdorff. For any open
subset Ω of X/G, let H0(Ω, OΩ) := H0(π−1(Ω), Oπ−1(Ω))G be the set of
all G-invariant holomorphic functions on π−1(Ω). In this way we obtain
a sheaf OX/G of local C-algebras on X/G. In general the local rings
OX/G,P are not Noetherian. Here we study the Cohen-Macaulyness of
the local rings of X/G, X smooth, in the non-Noetherian case. For
a theory of grade in the non-Noetherian case, see [1] or [2, Chapter
1]. We recall here the definition of C.M.∞-local ring given in [2, pp.
34 35]. Let A be a unitary commutative ring and n a nonnegative
integer. For any A-module M , let Tn(M) denote the set of all x ∈ M
such that the annihilator of x has grade at least n. It is easy to see
that Tn(M/Tn(M)) = 0 and TnTn = Tn. Thus the functor Tn defines
a torsion theory, i.e., for all submodules N of M we may define the n-
closure of N in M as the inverse image in M of Tn(M/N). The ring A,
respectively the module M , is said to be n-Noetherian if each increasing
sequence of n-closed ideals of A, respectively n-closed submodules of
M , is stationary and ∞-Noetherian if it is n-Noetherian for all n. The
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