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CLASSIFICATION OF 3-DIMENSIONAL
ISOLATED RATIONAL HYPERSURFACE

SINGULARITIES WITH C∗-ACTION

STEPHEN S.-T. YAU AND YUNG YU

1. Introduction. In [2] Artin first introduced the definition of ra-
tional surface singularity. He classified all rational surface singularities
embeddable in C3. These are precisely those Du Val singularities in
C3 defined by one of the following polynomial equations:

An : x2 + y2 + zn+1, for n ≥ 1
Dn : x2 + y2z + zn−1, for n ≥ 4
E6 : x2 + y3 + z4

E7 : x2 + y3 + yz3

E8 : x2 + y3 + z5.

It is well known that any canonical singularity, i.e., singularity that
occurs in a canonical model of a surface of general type, is analytically
isomorphic to one of the rational double points listed above.

In [3] Burns defined higher dimensional rational singularity as follows.
Let (V, p) be an n-dimensional isolated singularity. Let π : M → V be
a resolution of singularity. And p is said to be a rational singularity
if Riπ∗OM = 0 for 1 ≤ i ≤ n − 1. In [14], Yau shows for Gorenstein
singularity that it is sufficient to require Rn−1π∗OM = 0. He [14]
proves that Rn−1π∗OM

∼= H0(V −{p}, Ωn)/L2(V −{p}, Ωn) where Ωn

is the sheaf of germs of holomorphic n-forms and L2(V − {p}, Ωn) is
the space of holomorphic n forms on V − {p} which are L2-integrable.
The geometric genus pg of the singularity (V, p) is defined to be

pg := dimRn−1π∗OM = dim H0(V − {p}, Ωn)/L2(V − {p}, Ωn).

It turns out that pg is an important invariant of (V, p).
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