ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 6, 2005

INDUCED REPRESENTATIONS OF LOCALLY C*-ALGEBRAS

MARIA JOIŢA

ABSTRACT. In this paper, by analogy with the case of C^* -algebras, we define the notion of induced representation of a locally C^* -algebra and then we prove the imprimitivity theorem for induced representations of locally C^* -algebras.

1. Introduction. Locally C^* -algebras generalize the notion of C^* -algebra. A locally C^* -algebra is a complete Hausdorff complex topological *-algebra A whose topology is determined by its continuous C^* -seminorms in the sense that the net $\{a_i\}_{i \in I}$ converges to 0 if and only if the net $\{p(a_i)\}_{i \in I}$ converges to 0 for every continuous C^* -seminorm p on A. The terminology "locally C^* -algebra" is due to Inoue, see [2]. Locally C^* -algebras were also studied by Phillips, under the name of pro $-C^*$ -algebra, see [7], Fragoulopoulou, and other people.

A representation of A on a Hilbert space H is a continuous *morphism φ from A to L(H), the C^* -algebra of all bounded linear operators on H. Given a locally C^* -algebra A which acts nondegenerately on a Hilbert module E over a locally C^* -algebra B and a non-degenerate representation (φ , H) of B, exactly as in the case of C^* -algebras, see [8], we construct a representation of A, called the Rieffel-induced representation from B to A via E, and then we prove some properties of this representation. Thus, we prove that the theorem on induction in stages, Theorem 5.9 in [8], is also true in the context of locally C^* -algebras, Theorem 3.6. In Section 4, we prove that if A and B are two locally C^* -algebras which are strong Morita equivalent, then any non-degenerate representation of A is induced from a non-degenerate representation of B, Theorem 4.4.

2. Preliminaries. Let A be a locally C^* -algebra, and let S(A) be the set of all continuous C^* -seminorms on A. If $p \in S(A)$,

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS *Mathematics Subject Classification*. Primary 22D30, 46L05, 46L08. Received by the editors on March 4, 2003, and in revised form on January 26, 2004.