ON BASIC EMBEDDINGS INTO THE PLANE

DUŠAN REPOVŠ AND MATJAŽ ŽELJKO

ABSTRACT. A subset $K \subset \mathbb{R}^2$ is said to be basic if for each function $f: K \to \mathbf{R}$ there exist functions $g, h: \mathbf{R} \to \mathbf{R}$ such that f(x,y) = g(x) + h(y) for each point $(x,y) \in K$. If all the three functions in this definition are assumed to be continuous (differentiable), then the embedding is C^0 -basic $(C^1$ -basic). This notion appeared in studies of Hilbert's 13th problem on superpositions. We prove that if a finite graph is C^0 -basically embeddable in the plane, then it is C^1 -basically embeddable in the plane. In our proof we construct an explicit C^1 -basic embedding and use the Skopenkov characterization of graphs C^0 -basically embeddable in the plane. Our result is nontrivial because the plane contains graphs which are \mathbb{C}^0 basic but not C^1 -basic and graphs which are C^1 -basic but not C^0 -basic (Baran-Skopenkov). We also prove that given any integer $k \geq 0$, there is a subset of the plane which is C^r -basic for each $0 \le r \le k$ but not C^r -basic for each $k < r \le \omega$.

1. Introduction. The notion of a basic embedding appeared implicitly in the Kolmogorov-Arnold solution of Hilbert's 13th problem [1, **5**, **6**]. A compactum $K \subset \mathbf{R}^2$ is said to be *basic* if, for each continuous function $f: K \to \mathbf{R}$ there exist continuous functions $g, h: \mathbf{R} \to \mathbf{R}$ such that f(x,y) = g(x) + h(y) for each point $(x,y) \in K$. One can replace in the definition of a basic embedding *continuous* functions by *smooth* functions (by Lipschitz, Hölder, analytic, etc., functions) and obtain a notion of basic embeddability in a smooth, Lipschitz, Hölder, analytic, etc. sense.

This note is motivated by the following problems.

Problem 1. Find conditions on a compactum $K \subset \mathbf{R}^2$, under which K is basically embeddable into the plane in the smooth sense.

 $^{2000~\}mathrm{AMS}$ Mathematics Subject Classification. Primary 54F50, 54C25, Secondary 46J10, 54C30.

Key words and phrases. Basic embedding, linear relation, continuous function, array.

array. Received by the editors on November 27, 2003.