EQUAL SUMS OF SIXTH POWERS AND QUADRATIC LINE COMPLEXES

MASATO KUWATA

1. Introduction. This paper is concerned with the Diophantine equation:

$$
\begin{equation*}
x^{6}+y^{6}+z^{6}=u^{6}+v^{6}+w^{6} . \tag{1.1}
\end{equation*}
$$

We present a relation between this equation and Kummer's quartic surfaces through the theory of quadratic line complexes.

To this date there have been many numerical solutions to (1.1) discovered by various computer searches. (See Section 7 for more historical details.) A large part of them also satisfy the quadratic equation

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=u^{2}+v^{2}+w^{2} \tag{1.2}
\end{equation*}
$$

Furthermore, Bremner [1] shows that among those simultaneous solutions, most also satisfy the system of equations:

$$
\left\{\begin{array}{l}
x^{2}+x u-u^{2}=w^{2}+w z-z^{2} \tag{1.3}\\
y^{2}+y v-v^{2}=u^{2}+u x-x^{2} \\
z^{2}+z w-w^{2}=v^{2}+v y-y^{2}
\end{array}\right.
$$

Note that we recover (1.1) by cubing each equation in (1.3) and adding them.

Geometrically, this can be seen as follows. Let V_{4} be the fourfold defined by (1.1). Many of the rational points of V_{4} are contained in the subthreefold V_{3} cut out by the quadric (1.2). The system of equations (1.3) determines a $K 3$ surface K_{B} contained in V_{3}, and most of the known rational points of V_{3} are contained in K_{B}. Bremner [1] investigated this $K 3$ surface geometrically in depth. Among others, he gave a theoretical method to find all smooth parametric solutions.

[^0]
[^0]: AMS Mathematics Subject Classification. Primary 14J28, 11D41.
 Received by the editors on November 8, 2004.

