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ON THE IRREDUCIBILITY OF
A TRUNCATED BINOMIAL EXPANSION
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1. Introduction. For positive integers k and n with k ≤ n − 1,
define

Pn,k(x) =
k∑

j=0

(
n

j

)
xj .

In the case that k = n − 1, the polynomial Pn,k(x) takes the form

Pn,n−1(x) = (x + 1)n − xn.

If n is not a prime, Pn,n−1(x) is reducible over Q. If n = p is prime,
the polynomial Pn,n−1(x) = Pp,p−1(x) is irreducible as Eisenstein’s
criterion applies to the reciprocal polynomial xp−1Pp,p−1(1/x). This
note concerns the irreducibility of Pn,k(x) in the case where 1 ≤ k ≤
n − 2. Computations for n ≤ 100 suggest that in this case Pn,k(x) is
always irreducible. We will not be able to establish this but instead
give some results which give further evidence that these polynomials
are irreducible.

The problem arose during the 2004 MSRI program on Topological
aspects of real algebraic geometry, in the context of work by Inna
Scherbak in investigations of the Schubert calculus in Grassmannians.
She had observed that the roots of any given Pn,k(x) are simple. This
follows from the identity

Pn,k(x) − (x + 1)
P ′

n,k(x)
n

=
(

n − 1
k

)
xk.
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