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NONOSCILLATORY CRITERIA FOR SECOND-ORDER
NONLINEAR DIFFERENCE EQUATIONS

JIQIN DENG

ABSTRACT. In this paper, we obtain some nonoscillatory
theories of the second-order nonlinear difference equation

�(rn(�xn)α) + f(n + 1, xn+1) = 0, n ∈ N

where α is a quotient of positive odd integers, rn > 0 for
n ∈ N and f ∈ C(N × R, R).

1. Introduction. Consider the following second-order difference
equation

(1) �(rn(�xn)α) + f(n + 1, xn+1) = 0, n ∈ N

where α is a quotient of positive odd integers, �xn = xn+1−xn, rn > 0
for n ∈ N and f ∈ C(N× R, R).

A solution of (1) is called nonoscillatory if it is either eventually
positive or eventually negative; otherwise, it is called oscillatory.

In [6 10], many good results for nonoscillatory solutions of differen-
tial equations corresponding to (1) were obtained, but in the results the
condition where f(t, x) is either linear or quasi-linear was adopted. So
far, very few results for nonoscillation of (1) with generally nonlinear
term have been obtained. In this paper, by using the methods in the
proof of [1], we discuss nonoscillatory solutions of (1) and obtain the
following results.
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