ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 2000

FAITHFULNESS AND CANCELLATION OVER NOETHERIAN DOMAINS

H. PAT GOETERS AND BRUCE OLBERDING

A recent theme in the study of commutative rings is to observe the necessary structure present in a ring in order for a particular theorem in abelian group theory to hold true when interpreted for the ring. A theorem of Warfield [13] asserts that when X is a nonzero subgroup of the group of rational integers, then $G \cong_{nat} \text{Hom}(X, XG)$ for any torsion-free End (X)-module G, here XG has the appropriate meaning as a subgroup of the divisible hull of G. A module M over a ring R is called *faithful*, in the sense of Arnold and Lady [2], if IM = M implies I = R for any ideal I of R. In our work we will consider several variations of the faithful concept and relate them to Warfield's result.

Below, all unadorned Hom and \otimes symbols are with respect to the integral domain R, and Q is used to represent the quotient field of R. Given a torsion-free module M over R, we define the ring of fractions of M as $E_M = \{t \in Q \mid tM \subseteq M\}$ which is the largest overring of R in Q over which M is a module. The rank of a torsion-free module M is the dimension of the Q-vector space, $Q \otimes M$. In case X is a torsion-free module of rank one, E_X is just the endomorphism ring of X. We note without future reference that if S is an overring of R in Q and X and Y are torsion-free modules with $S \subseteq E_X \cap E_Y$, then Hom $(X, Y) = \text{Hom}_S(X, Y)$. In particular, E_X is independent of the base ring R. When P is a prime ideal of R, the notation S_P represents the localization of the module S at P and is therefore $S_P = R_P \cdot S \subseteq Q$.

1. Noetherian domains.

Definitions. An integral domain R is called *strongly faithful* if, for any submodule X of Q and torsion-free module G, one has $G \cong_{\text{nat}}$ Hom(X, XG) when $E_X \subseteq E_G$. Here XG is the submodule of the divisible hull of G, QG, generated by xg such that $x \in X$ and $g \in G$.

Received by the editors on April 24, 1997, and in revised form on September 30, 1998.

Copyright ©2000 Rocky Mountain Mathematics Consortium