ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

SHARP REGULARITY THEORY FOR ELASTIC AND THERMOELASTIC KIRCHOFF EQUATIONS WITH FREE BOUNDARY CONDITIONS

I. LASIECKA AND R. TRIGGIANI

ABSTRACT. We consider mixed problems for, initially, a two-dimensional model of an elastic Kirchoff equation with free boundary conditions (BC) and provide sharp trace and interior regularity results. The problem does not satisfy Lopatinski's conditions.

Pseudo-differential operator/micro-local analysis techniques are used. These results, in turn, yield a sharp regularity theory for the corresponding thermoelastic plate equation. The described sharp regularity theory, besides being of interest in itself, is critically needed in establishing a structural decomposition result of the corresponding thermoelastic semigroup with free BC [12], as well as in exact controllability problems.

1. Introduction and statement of main results.

Dynamical model. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with smooth boundary Γ , say of class \mathbb{C}^2 . On Ω we consider the following two mixed (dual) problems for the so-called Kirchoff plate equation with free boundary conditions (BC) in the vertical displacement $w(t,\xi)$ or $u(t,\xi), \xi = [\xi_1, \xi_2]$, respectively

$$\mathcal{P}w \equiv w_{tt} - \gamma \Delta w_{tt} + \Delta^2 w = q, \qquad u_{tt} - \gamma \Delta u_{tt} + \Delta^2 u = 0 \quad \text{in } Q,$$

(1.1b)

$$w(0,\cdot) = w_0, w_t(0,\cdot) = w_1, u(T,\cdot) = 0, u_t(T,\cdot) = 0$$
 in Ω ,

(1.1c)

$$\mathcal{B}_1 w \equiv \Delta w + B_1 w = 0, \qquad \Delta u + B_1 u = g_1 \quad \text{in } \Sigma,$$

(1.1d)

$$\mathcal{B}_2 w \equiv \frac{\partial \Delta w}{\partial \nu} + B_2 w - \gamma \frac{\partial w_{tt}}{\partial \nu} \equiv 0; \quad \frac{\partial \Delta u}{\partial \nu} + B_2 u - \gamma \frac{\partial u_{tt}}{\partial \nu} = g_2 \quad \text{in } \Sigma;$$

Received by the editors on December 28, 1998, and in revised form on June 26, 2000.

Research partially supported by the Army Research Office under Grant DAAH04-96-1-0059, and by the National Science Foundation under Grant DMS-9504822.

Copyright ©2000 Rocky Mountain Mathematics Consortium