BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

SOME RESULTS ON MEAN LIPSCHITZ SPACES OF ANALYTIC FUNCTIONS

DANIEL GIRELA AND CRISTÓBAL GONZÁLEZ

ABSTRACT. If f is a function which is analytic in the unit disk Δ and has a nontangential limit $f(e^{i\theta})$ at almost every $e^{i\theta} \in \partial \Delta$ and $1 \leq p \leq \infty$, then $\omega_p(\cdot, f)$ denotes the integral modulus of continuity of order p of the boundary values $f(e^{i\theta})$ of f. If $\omega : [0, \pi] \to [0, \infty)$ is a continuous and increasing function with $\omega(0) = 0$ and $\omega(t) > 0$ if t > 0 then, for $1 \leq p \leq \infty$, the mean Lipschitz space $\Lambda(p,\omega)$ consists of those functions f which belong to the classical Hardy space H^p and satisfy $\omega_p(\delta, f) = O(\omega(\delta))$ as $\delta \to 0$. If, in addition, ω satisfies the so-called Dini condition and the condition b_1 , we say that ω is an admissible weight. If $0 < \alpha \leq 1$ and $\omega(\delta) = \delta^{\alpha}$, we shall write Λ^{p}_{α} instead of $\Lambda(p, \omega)$, that is, we set $\Lambda^p_{\alpha} = \Lambda(p, \delta^{\alpha}).$

In this paper we obtain several results about the Taylor coefficients and the radial variation of the elements of the spaces $\Lambda(p,\omega)$. In particular, if ω is an admissible weight, then we give a complete characterization of the power series with Hadamard gaps which belong to $\Lambda(p, \omega)$.

If f is an analytic function in Δ and $\theta \in [-\pi,\pi)$, we let $V(f, \theta)$ denote the radial variation of f along the radius $[0, e^{i\theta})$. We also define the exceptional set E(f) associated to f as $E(f) = \{e^{i\theta} \in \mathbf{T} : V(f, \theta) = \infty\}$. For any given $p \in [1, \infty]$, we obtain a characterization of those admissible weights ω for which the implication

$$f \in \Lambda(p,\omega) \Longrightarrow E(f) = \emptyset,$$

holds. We also obtain a number of results about the "size" of the exceptional set E(f) for $f \in \Lambda^p_{\alpha}$.

1. Introduction. Let Δ denote the unit disk $\{z \in \mathbf{C} : |z| < 1\}$ and **T** the unit circle $\{\xi \in \mathbf{C} : |\xi| = 1\}$. If 0 < r < 1 and g is a function

Copyright ©2000 Rocky Mountain Mathematics Consortium

Received by the editors on January 20, 1999, and in revised form on June 21, 1999.

¹⁹⁹¹ AMS *Mathematics Subject Classification*. 30D55, 30D50. This research has been supported in part by a grant from "El Ministerio de Educación y Cultura, Spain," (PB97-1081) and by a grant from "La Junta de Andalucía.'