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SOME RESULTS ON MEAN LIPSCHITZ
SPACES OF ANALYTIC FUNCTIONS

DANIEL GIRELA AND CRISTÓBAL GONZÁLEZ

ABSTRACT. If f is a function which is analytic in the
unit disk ∆ and has a nontangential limit f(eiθ) at almost
every eiθ ∈ ∂∆ and 1 ≤ p ≤ ∞, then ωp(·, f) denotes the
integral modulus of continuity of order p of the boundary
values f(eiθ) of f . If ω : [0, π] → [0,∞) is a continuous and
increasing function with ω(0) = 0 and ω(t) > 0 if t > 0 then,
for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω) consists of
those functions f which belong to the classical Hardy space
Hp and satisfy ωp(δ, f) = O(ω(δ)) as δ → 0. If, in addition,
ω satisfies the so-called Dini condition and the condition b1,
we say that ω is an admissible weight. If 0 < α ≤ 1 and
ω(δ) = δα, we shall write Λp

α instead of Λ(p, ω), that is, we
set Λp

α = Λ(p, δα).

In this paper we obtain several results about the Taylor
coefficients and the radial variation of the elements of the
spaces Λ(p, ω). In particular, if ω is an admissible weight,
then we give a complete characterization of the power series
with Hadamard gaps which belong to Λ(p, ω).

If f is an analytic function in ∆ and θ ∈ [−π, π), we
let V (f, θ) denote the radial variation of f along the radius
[0, eiθ). We also define the exceptional set E(f) associated
to f as E(f) = {eiθ ∈ T : V (f, θ) = ∞}. For any given
p ∈ [1,∞], we obtain a characterization of those admissible
weights ω for which the implication

f ∈ Λ(p, ω) =⇒ E(f) = ∅,

holds. We also obtain a number of results about the “size” of
the exceptional set E(f) for f ∈ Λp

α.

1. Introduction. Let ∆ denote the unit disk {z ∈ C : |z| < 1} and
T the unit circle {ξ ∈ C : |ξ| = 1}. If 0 < r < 1 and g is a function
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