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VECTOR BUNDLES ON A FORMAL
NEIGHBORHOOD OF A CURVE IN A SURFACE

E. BALLICO AND E. GASPARIM

ABSTRACT. Here we study vector bundles in a formal
or tubular neighborhood of a smooth projective curve C
in a complex surface W. In several cases (e.g., if C has
genus 0 and its normal bundle has degree —1 or —2) we
attach to every such bundle a series of discrete invariants and
“simpler” bundles, and we study the set of all bundles with
fixed invariants.

0. Introduction. Let W be either a smooth connected quasi-
projective surface defined over an algebraically closed field K or a
smooth connected two-dimensional complex manifold. Let C C W
be a smooth connected curve of genus ¢ > 0 and U either the formal
completion of W along C or, in the complex analytic case, a small
tubular neighborhood of C' in W for the Euclidean topology. We want
to study algebraic (or complex analytic) vector bundles on U. Even
more, we want to study families of vector bundles on U “parametrized”
(not one-to-one and usually not even generically finite to one) by
integral varieties or irreducible and reduced complex spaces. In some
cases a natural topological structure appears which allows us to say
that a family of vector bundles is in the closure of another set of vector
bundles. We give an easy example. Let 7 : W — P? be the blowing-up
of the complex plane at a point. Let U be a small open Euclidean
neighborhood of the exceptional divisor C' on W. Consider a rank two
holomorphic bundle FE over W with F | C =2 O¢(2)®0¢(—2). A simple
application of [3, Theorem 2.1] tells us that £ | U can be given by a 2x2
transition matrix of the form (g;;) with g1 = 22, gog =272, g1 =0
and g12 € C[z,u] with gi2 of the form g = (p10 + p112)u + p212u?
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