BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 4, Winter 2001

MINIMAL PRESENTATIONS OF FULL SUBSEMIGROUPS OF N²

J.C. ROSALES AND P.A. GARCÍA-SÁNCHEZ

ABSTRACT. We show that the cardinality of a minimal presentation for a two-dimensional full affine subsemigroup of \mathbf{N}^2 minimally generated by p elements is $\binom{p-1}{2}$.

A subsemigroup S of \mathbf{N}^2 is full if $S = \mathbf{G}(S) \cap \mathbf{N}^2$, where $\mathbf{G}(S)$ denotes the subgroup of \mathbb{Z}^2 spanned by S. In this paper we are going to assume that S is a full subsemigroup of \mathbf{N}^2 such that rank $(\mathbf{G}(S)) = 2$. (The case when rank $(\mathbf{G}(S)) \leq 1$ has no interest, because under this assumption $S = \{(0,0)\}$ or $S \cong \mathbf{N}$.) Note that if $a, b \in S$ and $a - b \in \mathbf{N}^2$, then $a - b \in \mathbf{G}(S) \cap \mathbf{N}^2 = S$. As a consequence, if $M = \{(a_1, b_1), \dots, (a_p, b_p)\}$ is the set of minimal elements of $S \setminus \{0\}$ with respect to the ordering $a \leq b$ if and only if $b - a \in \mathbb{N}^2$, then S is minimally generated by M. Furthermore, we can assume that the elements in M are ordered so that $a_1 < a_2 < \cdots < a_p$ and $b_1 > b_2 > \cdots > b_p.$

We define the map

$$\varphi : \mathbf{N}^p \longrightarrow S$$

 $\varphi(\lambda_1, \dots, \lambda_p) = \sum_{i=1}^p \lambda_i(a_i, b_i)$

and denote its kernel congruence by σ . Clearly, $S \cong \mathbf{N}^p / \sigma$. We say that ρ is a minimal system of generators for σ if ρ generates σ and ρ has minimal cardinality among the generating systems of σ . It can be shown that $\# \rho \ge p - 2$ (see [5]).

Given $s \in S \setminus \{0\}$, we define the graph G_s as the graph whose vertices are $V(G_s) = V_s = \{(a_i, b_i) \in M \mid s - (a_i, b_i) \in S\}$ and whose edges are $p\}.$

This paper was supported by the project DGES PB96-1424. Received by the editors on September 8, 1998, and in revised form on September 1, 2000.

Copyright ©2001 Rocky Mountain Mathematics Consortium