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SOME OF THE PROPERTIES OF
THE SEQUENCE OF POWERS
OF PRIME NUMBERS

LAURENTIU PANAITOPOL

ABSTRACT. The study of the increasing sequence (gn)n>1
of natural numbers that are powers of prime numbers (i.e.,
the numbers of the form p®, for every prime number p and
every integer a > 1) shows us that there is a perfect similarity
between this one and the sequence (pn)n>1 of prime numbers.
The Landau theorem (see [3]) and the Scherk theorem ([6])
have an equivalent for the numbers ¢,,. We can show that the
sequence (gn)p>1 is neither convex nor concave by using the
classical results on the distribution of primes.

1. Introduction. Let 7*(z) denote the number of all powers of
primes not exceeding x, i.e.,

7 (x) = card {there exist | p prime and o > 1 integers
such that n = p* < z}.

(1)

The definition of Mangold’s function A and Chebyshev’s function ¥
deals with these numbers.

Let (gn)n>1 be the sequence of these numbers: ¢; =2, g2 = 3, g3 = 4,
Q1 =D5,q5s="7,q96 =8, qr =9.... It is obvious that the only sequence
of four consecutive numbers belonging to (¢, )n>1 is 2, 3, 4, 5.

Triples of consecutive numbers which are included in the (g, )n>1
are 2, 3, 4; 3, 4, 5; 7, 8, 9. Indeed, for n > 2 such a triple is given by
g1 =28 —1, ¢, = 2%, ¢"T' = 241 and, because one of these numbers
is a multiple of three, it is obvious that 2¥ —1 = 3" or 2F + 1 = 3".
The solutions of these equations are (2,1) or (3,2), and the assertion is
justified.
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