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WHEN THE FAMILY OF FUNCTIONS VANISHING
AT INFINITY IS AN IDEAL OF C(X)

F. AZARPANAH AND T. SOUNDARARAJAN

ABSTRACT. We prove that C∞(X) is an ideal in C(X)
if and only if every open locally compact subset of X is
bounded. In particular, if X is a locally compact Hausdorff
space, C∞(X) is an ideal of C(X) if and only if X is a
pseudocompact space. It is shown that the existence of some
special functions in C∞(X) causes C∞(X) not to be an ideal
of C(X). Finally we will characterize the spaces X for which
C∞(X) and CK(X), or Cψ(X), coincide.

Introduction. Throughout this paper X stands for a completely
regular Hausdorff space and C(X)(C∗(X)) for the ring of all (bounded)
continuous real valued functions on X. In [1], Azarpanah considered
essential ideals in C(X) and characterized those X for which the ideal
CK(X) of all functions in C(X) with compact support is an essential
ideal in C(X). He considered also the subset C∞(X) of all those
functions in C(X) which vanish at infinity. It gives an impression there
that C∞(X) might always be an ideal of C(X). This, however, is not
always true, e.g., X = R.

We prove that C∞(X) will be an ideal of C(X) if and only if every
open locally compact subset of X is bounded. In particular, for a
locally compact Hausdorff space X, C∞(X) is an ideal in C(X) if and
only if X is a pseudocompact space. We note that Y ⊆ X is said to
be bounded if for every f ∈ C(X), f(Y ) is a bounded set in R. We
will show that the existence of a function f ∈ C∞(X) \ CK(X) whose
zero-set Z(f) is an open set, causes C∞(X) not to be an ideal of C(X).
We also observe that the existence of a function h in C∞(X) with Z(h)
a Lindelöf and bounded set causes C∞(X) not to be an ideal of C(X),
unless X is a compact space.
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