ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 3, Fall 2001

INDUCTION OF CHARACTERS, KERNELS AND LOCAL SUBGROUPS

GABRIEL NAVARRO

1. Introduction. Let G be a finite group, and let p be a prime number. Suppose that K is a subgroup of G having a character α such that $\alpha^G \in \operatorname{Irr}(G)$. If $\alpha(1) \leq p/2$, G.R. Robinson proved in [5] that

$$(\alpha_{\mathbf{N}_K(P)})^{\mathbf{N}_G(P)} \in \operatorname{Irr}(\mathbf{N}_G(P)),$$

where $P \in \operatorname{Syl}_p(K)$.

In [2], M. Isaacs proved this result when $\alpha(1) = 1$ by using elementary character theory. Robinson's general proof uses Green theory.

In the present note, we take a different approach and pay attention to the group $K/\ker(\alpha)$ instead of the degree of α .

Theorem A. Let $K \subseteq G$ and suppose that $\alpha \in Irr(K)$ induces $\alpha^G \in \operatorname{Irr}(G)$. Suppose that $P \in \operatorname{Syl}_p(K)$ is such that $P\ker(\alpha) \triangleleft K$. Then

$$(\alpha_{\mathbf{N}_K(P)})^{\mathbf{N}_G(P)} \in \operatorname{Irr}(\mathbf{N}_G(P)).$$

Notice that if α is linear then $K/\ker(\alpha)$ is abelian, and we are in the hypothesis of Theorem A. Also, by using the Feit-Thompson theorem on linear groups, we will recover most of Robinson's theorem. The only case in the Robinson's situation which is not treated by our methods is when $\alpha(1) = (p-1)/2$. In this case, in view of the classification of finite simple groups, a description of the non-p-closed linear groups of degree (p-1)/2 is possible. As remarked by the referee, it might be possible to weaken the hypothesis of p-closure in Theorem A to still obtain the same conclusion.

Research partially supported by DGICYT. Received by the editors on April 21, 1999, and in revised form on September 1, 2000.